Shikun Zhang, Norman Sadeh (Carnegie Mellon University)

Inspired by earlier academic research, iOS app privacy labels and the recent Google Play data safety labels have been introduced as a way to systematically present users with concise summaries of an app’s data practices. Yet, little research has been conducted to determine how well today’s mobile app privacy labels address people’s actual privacy concerns or questions. We analyze a crowd-sourced corpus of privacy questions collected from mobile app users to determine to what extent these mobile app labels actually address users’ privacy concerns and questions. While there are differences between iOS labels and Google Play labels, our results indicate that an important percentage of people’s privacy questions are not answered or only partially addressed in today’s labels. Findings from this work not only shed light on the additional fields that would need to be included in mobile app privacy labels but can also help inform refinements to existing labels to better address users’ typical privacy questions.

View More Papers

FCGAT: Interpretable Malware Classification Method using Function Call Graph...

Minami Someya (Institute of Information Security), Yuhei Otsubo (National Police Academy), Akira Otsuka (Institute of Information Security)

Read More

On-demand RFID: Improving Privacy, Security, and User Trust in...

Youngwook Do (JPMorganChase and Georgia Institute of Technology), Tingyu Cheng (Georgia Institute of Technology and University of Notre Dame), Yuxi Wu (Georgia Institute of Technology and Northeastern University), HyunJoo Oh(Georgia Institute of Technology), Daniel J. Wilson (Northeastern University), Gregory D. Abowd (Northeastern University), Sauvik Das (Carnegie Mellon University)

Read More

podft: On Accelerating Dynamic Taint Analysis with Precise Path...

Zhiyou Tian (Xidian University), Cong Sun (Xidian University), Dongrui Zeng (Palo Alto Networks), Gang Tan (Pennsylvania State University)

Read More

Access Your Tesla without Your Awareness: Compromising Keyless Entry...

Xinyi Xie (Shanghai Fudan Microelectronics Group Co., Ltd.), Kun Jiang (Shanghai Fudan Microelectronics Group Co., Ltd.), Rui Dai (Shanghai Fudan Microelectronics Group Co., Ltd.), Jun Lu (Shanghai Fudan Microelectronics Group Co., Ltd.), Lihui Wang (Shanghai Fudan Microelectronics Group Co., Ltd.), Qing Li (State Key Laboratory of ASIC & System, Fudan University), Jun Yu (State Key…

Read More