Hongchao Zhang (Washington University in St. Louis), Zhouchi Li (Worcester Polytechnic Institute), Shiyu Cheng (Washington University in St. Louis), Andrew Clark (Washington University in St. Louis)

GM AutoDriving Security Award Winner ($1,000 cash prize)!

Autonomous vehicles rely on LiDAR sensors to detect obstacles such as pedestrians, other vehicles, and fixed infrastructures. LiDAR spoofing attacks have been demonstrated that either create erroneous obstacles or prevent detection of real obstacles, resulting in unsafe driving behaviors. In this paper, we propose an approach to detect and mitigate LiDAR spoofing attacks by leveraging LiDAR scan data from other neighboring vehicles. This approach exploits the fact that spoofing attacks can typically only be mounted on one vehicle at a time, and introduce additional points into the victim’s scan that can be readily detected by comparison from other, non-modified scans. We develop a Fault Detection, Identification, and Isolation procedure that identifies non-existing obstacle, physical removal, and adversarial object attacks, while also estimating the actual locations of obstacles. We propose a control algorithm that guarantees that these estimated object locations are avoided. We validate our framework using a CARLA simulation study, in which we verify that our FDII algorithm correctly detects each attack pattern.

View More Papers

Accurate Compiler and Optimization Independent Function Identification Using Program...

Derrick McKee (Purdue University), Nathan Burow (MIT Lincoln Laboratory), Mathias Payer (EPFL)

Read More

Understanding the Internet-Wide Vulnerability Landscape for ROS-based Robotic Vehicles...

Wentao Chen, Sam Der, Yunpeng Luo, Fayzah Alshammari, Qi Alfred Chen (University of California, Irvine)

Read More

WIP: Towards the Practicality of the Adversarial Attack on...

Chen Ma (Xi'an Jiaotong University), Ningfei Wang (University of California, Irvine), Qi Alfred Chen (University of California, Irvine), Chao Shen (Xi'an Jiaotong University)

Read More

QPEP in the Real World: A Testbed for Secure...

Julian Huwyler (ETH Zurich), James Pavur (University of Oxford), Giorgio Tresoldi and Martin Strohmeier (Cyber-Defence Campus) Presenter: Martin Strohmeier

Read More