Nicolas Quero (Expleo France), Aymen Boudguiga (CEA LIST), Renaud Sirdey (CEA LIST), Nadir Karam (Expleo France)

Platooning is an upcoming technology which aims at improving transportation by allowing a leading human-driven vehicle to automatically guide multiple trucks to their respective destinations, saving driver time, improving road efficiency and reducing gas consumption. However, efficient linkage of trucks to platoons requires the centralization and processing of business-critical data which truck operators are not willing to disclose. In order to address these issues, we investigate how homomorphic encryption can be used at the core of a protocol for privately linking a vehicle to a nearby platoon without disclosing its location and destination. Furthermore, we provide experimental results illustrating that such protocols achieve acceptable performances and latencies at practical platoon database scales (serving around 500 simultaneous clients on a single platooning server processor core with sub second latency over databases of up to ≈60000 platoons scattered among over 250 destinations).

View More Papers

On the Vulnerability of Traffic Light Recognition Systems to...

Sri Hrushikesh Varma Bhupathiraju (University of Florida), Takami Sato (University of California, Irvine), Michael Clifford (Toyota Info Labs), Takeshi Sugawara (The University of Electro-Communications), Qi Alfred Chen (University of California, Irvine), Sara Rampazzi (University of Florida)

Read More

CANtropy: Time Series Feature Extraction-Based Intrusion Detection Systems for...

Md Hasan Shahriar, Wenjing Lou, Y. Thomas Hou (Virginia Polytechnic Institute and State University)

Read More

CableAuth: A Biometric Second Factor Authentication Scheme for Electric...

Jack Sturgess, Sebastian Köhler, Simon Birnbach, Ivan Martinovic (University of Oxford)

Read More

CHKPLUG: Checking GDPR Compliance of WordPress Plugins via Cross-language...

Faysal Hossain Shezan (University of Virginia), Zihao Su (University of Virginia), Mingqing Kang (Johns Hopkins University), Nicholas Phair (University of Virginia), Patrick William Thomas (University of Virginia), Michelangelo van Dam (in2it), Yinzhi Cao (Johns Hopkins University), Yuan Tian (UCLA)

Read More