Yun Zhang (Hunan University), Yuling Liu (Hunan University), Ge Cheng (Xiangtan University), Bo Ou (Hunan University)

In the field of computer security, binary code similarity detection is a crucial for identifying malicious software, copyright infringement, and software vulnerabilities. However, obfuscation techniques not only changes the structure and features of the code but also effectively conceal its potential malicious behaviors or infringing nature, thereby increasing the complexity of detection. Although methods based on graph neural networks have become the forefront technology for solving code similarity detection due to their effective processing and representation of code structures, they have limitations in dealing with obfuscated function matching, especially in scenarios involving control flow obfuscation. This paper proposes a method based on Graph Transformers aimed at improving the accuracy and efficiency of obfuscation-resilient binary code similarity detection. Our method utilizes Transformers to extract global information and employs three different encodings to determine the relative importance or influence of nodes in the CFG, the relative position between nodes, and the hierarchical relationships within the CFG. This method demonstrates significant adaptability to various obfuscation techniques and exhibits enhanced robustness and scalability when processing large datasets.

View More Papers

Proof of Backhaul: Trustfree Measurement of Broadband Bandwidth

Peiyao Sheng (Kaleidoscope Blockchain Inc.), Nikita Yadav (Indian Institute of Science), Vishal Sevani (Kaleidoscope Blockchain Inc.), Arun Babu (Kaleidoscope Blockchain Inc.), Anand Svr (Kaleidoscope Blockchain Inc.), Himanshu Tyagi (Indian Institute of Science), Pramod Viswanath (Kaleidoscope Blockchain Inc.)

Read More

Mnemocrypt

André Pacteau, Antonino Vitale, Davide Balzarotti, Simone Aonzo (EURECOM)

Read More

MadRadar: A Black-Box Physical Layer Attack Framework on mmWave...

David Hunt (Duke University), Kristen Angell (Duke University), Zhenzhou Qi (Duke University), Tingjun Chen (Duke University), Miroslav Pajic (Duke University)

Read More

The Advantages of Distributed TCAM Firewalls in Automotive Real-Time...

Evan Allen (Virginia Tech), Zeb Bowden (Virginia Tech Transportation Institute), J. Scot Ransbottom (Virginia Tech)

Read More