Jun Ying, Yiheng Feng (Purdue University), Qi Alfred Chen (University of California, Irvine), Z. Morley Mao (University of Michigan and Google)

Connected Vehicle (CV) and Connected and Autonomous Vehicle (CAV) technologies can greatly improve traffic efficiency and safety. Data spoofing attack is one major threat to CVs and CAVs, since abnormal data (e.g., falsified trajectories) may influence vehicle navigation and deteriorate CAV/CV-based applications. In this work, we aim to design a generic anomaly detection model which can be used to identify abnormal trajectories from both known and unknown data spoofing attacks. First, the attack behaviors of two representative known attacks are modeled. Then, Using driving features derived from transportation and vehicle domain knowledge, an anomaly detection framework is proposed. The framework combines a feature extractor and an anomaly classifier trained with known attack trajectories and can be applied to identify falsified trajectories generated by various attacks. In the numerical experiment, a highway segment with a signalized intersection is built in the V2X Application Spoofing Platform (VASP). To evaluate the generality of the proposed anomaly detection algorithm, we further tested the proposed model with several unknown attacks provided in VASP. The results indicate that the proposed model achieves high accuracy in detecting falsified attack trajectories from both known and unknown attacks.

View More Papers

Proof of Backhaul: Trustfree Measurement of Broadband Bandwidth

Peiyao Sheng (Kaleidoscope Blockchain Inc.), Nikita Yadav (Indian Institute of Science), Vishal Sevani (Kaleidoscope Blockchain Inc.), Arun Babu (Kaleidoscope Blockchain Inc.), Anand Svr (Kaleidoscope Blockchain Inc.), Himanshu Tyagi (Indian Institute of Science), Pramod Viswanath (Kaleidoscope Blockchain Inc.)

Read More

AnonPSI: An Anonymity Assessment Framework for PSI

Bo Jiang (TikTok Inc.), Jian Du (TikTok Inc.), Qiang Yan (TikTok Inc.)

Read More

Transforming Raw Authentication Logs into Interpretable Events

Seth Hastings, Tyler Moore, Corey Bolger, Philip Schumway (University of Tulsa)

Read More

TrustSketch: Trustworthy Sketch-based Telemetry on Cloud Hosts

Zhuo Cheng (Carnegie Mellon University), Maria Apostolaki (Princeton University), Zaoxing Liu (University of Maryland), Vyas Sekar (Carnegie Mellon University)

Read More