Jun Ying, Yiheng Feng (Purdue University), Qi Alfred Chen (University of California, Irvine), Z. Morley Mao (University of Michigan and Google)

Connected Vehicle (CV) and Connected and Autonomous Vehicle (CAV) technologies can greatly improve traffic efficiency and safety. Data spoofing attack is one major threat to CVs and CAVs, since abnormal data (e.g., falsified trajectories) may influence vehicle navigation and deteriorate CAV/CV-based applications. In this work, we aim to design a generic anomaly detection model which can be used to identify abnormal trajectories from both known and unknown data spoofing attacks. First, the attack behaviors of two representative known attacks are modeled. Then, Using driving features derived from transportation and vehicle domain knowledge, an anomaly detection framework is proposed. The framework combines a feature extractor and an anomaly classifier trained with known attack trajectories and can be applied to identify falsified trajectories generated by various attacks. In the numerical experiment, a highway segment with a signalized intersection is built in the V2X Application Spoofing Platform (VASP). To evaluate the generality of the proposed anomaly detection algorithm, we further tested the proposed model with several unknown attacks provided in VASP. The results indicate that the proposed model achieves high accuracy in detecting falsified attack trajectories from both known and unknown attacks.

View More Papers

Timing Channels in Adaptive Neural Networks

Ayomide Akinsanya (Stevens Institute of Technology), Tegan Brennan (Stevens Institute of Technology)

Read More

VPN Awareness and Misconceptions: A Comparative Study in Canadian...

Lachlan Moore, Tatsuya Mori (Waseda University, NICT)

Read More

An Experimental Study on Attacking Homogeneous Averaging Processes via...

Olsan Ozbay (Dept. ECE, University of Maryland), Yuntao Liu (ISR, University of Maryland), Ankur Srivastava (Dept. ECE, ISR, University of Maryland)

Read More

Predictive Context-sensitive Fuzzing

Pietro Borrello (Sapienza University of Rome), Andrea Fioraldi (EURECOM), Daniele Cono D'Elia (Sapienza University of Rome), Davide Balzarotti (Eurecom), Leonardo Querzoni (Sapienza University of Rome), Cristiano Giuffrida (Vrije Universiteit Amsterdam)

Read More