Paul Agbaje, Abraham Mookhoek, Afia Anjum, Arkajyoti Mitra (University of Texas at Arlington), Mert D. Pesé (Clemson University), Habeeb Olufowobi (University of Texas at Arlington)

Millions of lives are lost due to road accidents each year, emphasizing the importance of improving driver safety measures. In addition, physical vehicle security is a persistent challenge exacerbated by the growing interconnectivity of vehicles, allowing adversaries to engage in vehicle theft and compromising driver privacy. The integration of advanced sensors with internet connectivity has ushered in the era of intelligent transportation systems (ITS), enabling vehicles to generate abundant data that facilitates diverse vehicular applications. These data can also provide insights into driver behavior, enabling effective driver monitoring to support safety and security. In this paper, we propose AutoWatch, a graph-based approach for modeling the behavior of drivers, verifying the identity of the driver, and detecting unsafe driving maneuvers. Our evaluation shows that AutoWatch can improve driver identification accuracy by up to 22% and driving maneuver classification by up to 5.7% compared to baseline techniques.

View More Papers

dRR: A Decentralized, Scalable, and Auditable Architecture for RPKI...

Yingying Su (Tsinghua university), Dan Li (Tsinghua university), Li Chen (Zhongguancun Laboratory), Qi Li (Tsinghua university), Sitong Ling (Tsinghua University)

Read More

The CURE to Vulnerabilities in RPKI Validation

Donika Mirdita (Technische Universität Darmstadt), Haya Schulmann (Goethe-Universität Frankfurt), Niklas Vogel (Goethe-Universität Frankfurt), Michael Waidner (Technische Universität Darmstadt, Fraunhofer SIT)

Read More

Pencil: Private and Extensible Collaborative Learning without the Non-Colluding...

Xuanqi Liu (Tsinghua University), Zhuotao Liu (Tsinghua University), Qi Li (Tsinghua University), Ke Xu (Tsinghua University), Mingwei Xu (Tsinghua University)

Read More