Paul Agbaje, Abraham Mookhoek, Afia Anjum, Arkajyoti Mitra (University of Texas at Arlington), Mert D. Pesé (Clemson University), Habeeb Olufowobi (University of Texas at Arlington)

Millions of lives are lost due to road accidents each year, emphasizing the importance of improving driver safety measures. In addition, physical vehicle security is a persistent challenge exacerbated by the growing interconnectivity of vehicles, allowing adversaries to engage in vehicle theft and compromising driver privacy. The integration of advanced sensors with internet connectivity has ushered in the era of intelligent transportation systems (ITS), enabling vehicles to generate abundant data that facilitates diverse vehicular applications. These data can also provide insights into driver behavior, enabling effective driver monitoring to support safety and security. In this paper, we propose AutoWatch, a graph-based approach for modeling the behavior of drivers, verifying the identity of the driver, and detecting unsafe driving maneuvers. Our evaluation shows that AutoWatch can improve driver identification accuracy by up to 22% and driving maneuver classification by up to 5.7% compared to baseline techniques.

View More Papers

On the Security of Satellite-Based Air Traffic Control

Tobias Lüscher (ETH Zurich), Martin Strohmeier (Cyber-Defence Campus, armasuisse S+T), Vincent Lenders (Cyber-Defence Campus, armasuisse S+T)

Read More

WIP: Hidden Hub Eavesdropping Attack in Matter-enabled Smart Home...

Song Liao, Jingwen Yan, Long Cheng (Clemson University)

Read More

IDA: Hybrid Attestation with Support for Interrupts and TOCTOU

Fatemeh Arkannezhad (UCLA), Justin Feng (UCLA), Nader Sehatbakhsh (UCLA)

Read More

Securing Lidar Communication through Watermark-based Tampering Detection (Long)

Michele Marazzi, Stefano Longari, Michele Carminati, Stefano Zanero (Politecnico di Milano)

Read More