Paul Agbaje, Abraham Mookhoek, Afia Anjum, Arkajyoti Mitra (University of Texas at Arlington), Mert D. Pesé (Clemson University), Habeeb Olufowobi (University of Texas at Arlington)

Millions of lives are lost due to road accidents each year, emphasizing the importance of improving driver safety measures. In addition, physical vehicle security is a persistent challenge exacerbated by the growing interconnectivity of vehicles, allowing adversaries to engage in vehicle theft and compromising driver privacy. The integration of advanced sensors with internet connectivity has ushered in the era of intelligent transportation systems (ITS), enabling vehicles to generate abundant data that facilitates diverse vehicular applications. These data can also provide insights into driver behavior, enabling effective driver monitoring to support safety and security. In this paper, we propose AutoWatch, a graph-based approach for modeling the behavior of drivers, verifying the identity of the driver, and detecting unsafe driving maneuvers. Our evaluation shows that AutoWatch can improve driver identification accuracy by up to 22% and driving maneuver classification by up to 5.7% compared to baseline techniques.

View More Papers

It’s Standards’ Time to Shine: Insights for IoT Cybersecurity...

Dr. Michael J. Fagan, National Institute of Standards and Technology

Read More

Investigating the Impact of Evasion Attacks Against Automotive Intrusion...

Paolo Cerracchio, Stefano Longari, Michele Carminati, Stefano Zanero (Politecnico di Milano)

Read More

Front-running Attack in Sharded Blockchains and Fair Cross-shard Consensus

Jianting Zhang (Purdue University), Wuhui Chen (Sun Yat-sen University), Sifu Luo (Sun Yat-sen University), Tiantian Gong (Purdue University), Zicong Hong (The Hong Kong Polytechnic University), Aniket Kate (Purdue University)

Read More

Exploiting Transport Protocol Vulnerabilities in SAE J1939 Networks

Rik Chatterjee, Subhojeet Mukherjee, Jeremy Daily (Colorado State University)

Read More