Yuki Hayakawa (Keio University), Takami Sato (University of California, Irvine), Ryo Suzuki, Kazuma Ikeda, Ozora Sako, Rokuto Nagata (Keio University), Qi Alfred Chen (University of California, Irvine), Kentaro Yoshioka (Keio University)

LiDAR stands as a critical sensor in the realm of autonomous vehicles (AVs). Considering its safety and security criticality, recent studies have actively researched its security and warned of various safety implications against LiDAR spoofing attacks, which can cause critical safety implications on AVs by injecting ghost objects or removing legitimate objects from their detection. To defend against LiDAR spoofing attacks, pulse fingerprinting has been expected as one of the most promising countermeasures against LiDAR spoofing attacks, and recent research demonstrates its high defense capability, especially against object removal attacks. In this WIP paper, we report the progress in conducting further security analysis on pulse fingerprinting against LiDAR spoofing attacks. We design a novel adaptive attack strategy, the Adaptive High-Frequency Removal (A-HFR) attack, which can be effective against broader types of LiDARs than the existing HFR attacks. We evaluate the A-HFR attack on three commercial LiDAR with pulse fingerprinting and find that the A-HFR attack can successfully remove over 96% of the point cloud within a 20◦ horizontal and a 16◦ vertical angle. Our finding indicates that current pulse fingerprinting techniques might not be sufficiently robust to thwart spoofing attacks. We also discuss potential strategies to enhance the defensive efficacy of pulse fingerprinting against such attacks. This finding implies that the current pulse fingerprinting may not be an ultimate countermeasure against LiDAR spoofing attacks. We finally discuss our future plans.

View More Papers

CAN-MIRGU: A Comprehensive CAN Bus Attack Dataset from Moving...

Sampath Rajapaksha, Harsha Kalutarage (Robert Gordon University, UK), Garikayi Madzudzo (Horiba Mira Ltd, UK), Andrei Petrovski (Robert Gordon University, UK), M.Omar Al-Kadri (University of Doha for Science and Technology)

Read More

Exploiting Sequence Number Leakage: TCP Hijacking in NAT-Enabled Wi-Fi...

Yuxiang Yang (Tsinghua University), Xuewei Feng (Tsinghua University), Qi Li (Tsinghua University), Kun Sun (George Mason University), Ziqiang Wang (Southeast University), Ke Xu (Tsinghua University)

Read More

WIP: Adversarial Retroreflective Patches: A Novel Stealthy Attack on...

Go Tsuruoka (Waseda University), Takami Sato, Qi Alfred Chen (University of California, Irvine), Kazuki Nomoto, Ryunosuke Kobayashi, Yuna Tanaka (Waseda University), Tatsuya Mori (Waseda University/NICT/RIKEN)

Read More

LDR: Secure and Efficient Linux Driver Runtime for Embedded...

Huaiyu Yan (Southeast University), Zhen Ling (Southeast University), Haobo Li (Southeast University), Lan Luo (Anhui University of Technology), Xinhui Shao (Southeast University), Kai Dong (Southeast University), Ping Jiang (Southeast University), Ming Yang (Southeast University), Junzhou Luo (Southeast University, Nanjing, P.R. China), Xinwen Fu (University of Massachusetts Lowell)

Read More