Sampath Rajapaksha, Harsha Kalutarage (Robert Gordon University, UK), Garikayi Madzudzo (Horiba Mira Ltd, UK), Andrei Petrovski (Robert Gordon University, UK), M.Omar Al-Kadri (University of Doha for Science and Technology)

The Controller Area Network (CAN Bus) has emerged as the de facto standard for in-vehicle communication. However, the CAN bus lacks security features, such as encryption and authentication, making it vulnerable to cyberattacks. In response, the current literature has prioritized the development of Intrusion Detection Systems (IDSs). Nevertheless, the progress of IDS research encounters significant obstacles due to the absence of high-quality, publicly available real CAN data, especially data featuring realistic, verified attacks. This scarcity primarily arises from the substantial cost and associated risks involved in generating real attack data on moving vehicles. Addressing this challenge, this paper introduces a novel CAN bus attack dataset collected from a modern automobile equipped with autonomous driving capabilities, operating under real-world driving conditions. The dataset includes 17 hours of benign data, covering a wide range of scenarios, crucial for training IDSs. Additionally, it comprises 26 physically verified real injection attacks, including Denial-of-Service (DoS), fuzzing, replay, and spoofing, targeting 13 CAN IDs. Furthermore, the dataset encompasses 10 simulated masquerade and suspension attacks, offering 2 hours and 54 minutes of attack data. This comprehensive dataset facilitates rigorous testing and evaluation of various IDSs against a diverse array of realistic attacks, contributing to the enhancement of in-vehicle security.

View More Papers

Efficient and Timely Revocation of V2X Credentials

Gianluca Scopelliti (Ericsson & KU Leuven), Christoph Baumann (Ericsson), Fritz Alder (KU Leuven), Eddy Truyen (KU Leuven), Jan Tobias Mühlberg (Université libre de Bruxelles & KU Leuven)

Read More

Understanding Route Origin Validation (ROV) Deployment in the Real...

Lancheng Qin (Tsinghua University, BNRist), Li Chen (Zhongguancun Laboratory), Dan Li (Tsinghua University, Zhongguancun Laboratory), Honglin Ye (Tsinghua University), Yutian Wang (Tsinghua University)

Read More

WIP: Modeling and Detecting Falsified Vehicle Trajectories Under Data...

Jun Ying, Yiheng Feng (Purdue University), Qi Alfred Chen (University of California, Irvine), Z. Morley Mao (University of Michigan and Google)

Read More

ORL-AUDITOR: Dataset Auditing in Offline Deep Reinforcement Learning

Linkang Du (Zhejiang University), Min Chen (CISPA Helmholtz Center for Information Security), Mingyang Sun (Zhejiang University), Shouling Ji (Zhejiang University), Peng Cheng (Zhejiang University), Jiming Chen (Zhejiang University), Zhikun Zhang (CISPA Helmholtz Center for Information Security and Stanford University)

Read More