James Fitts, Chris Fennel (Walmart)

Red Team campaigns simulate real adversaries and provide real value to the organization by exposing vulnerable infrastructure and processes that need to be improved. The challenge is that as organizations scale in size, time between campaign retesting increases. This can lead to gaps in ensuring coverage and finding emerging issues. Automation and simulation of adversarial attacks can be created to address the scale problem. Collecting libraries of Tactics, Techniques and Procedures (TTPs) and testing them via adversarial emulation software. Unfortunately, automation lacks feedback and cannot analyze the data in real time with each test.

To address this problem, we introduce RAMPART (Repeated And Measured Post Access Red Teaming). RAMPART campaigns are very quick campaigns (1 day) meant to bridge the gap between the automation of Red Team simulations and full blown Red Team campaigns. The speed of these campaigns comes from pre-built playbooks backed by Cyber Threat Intelligence (CTI) research. This approach enables a level of freedom to make decisions based on the data the red team analyst sees from their tooling and allows testing further in the attack chain to test detections that could be missed otherwise.

View More Papers

AVMON: Securing Autonomous Vehicles by Learning Control Invariants and...

Ahmed Abdo, Sakib Md Bin Malek, Xuanpeng Zhao, Nael Abu-Ghazaleh (University of California, Riverside)

Read More

Transpose Attack: Stealing Datasets with Bidirectional Training

Guy Amit (Ben-Gurion University), Moshe Levy (Ben-Gurion University), Yisroel Mirsky (Ben-Gurion University)

Read More

ReqsMiner: Automated Discovery of CDN Forwarding Request Inconsistencies and...

Linkai Zheng (Tsinghua University), Xiang Li (Tsinghua University), Chuhan Wang (Tsinghua University), Run Guo (Tsinghua University), Haixin Duan (Tsinghua University; Quancheng Laboratory), Jianjun Chen (Tsinghua University; Zhongguancun Laboratory), Chao Zhang (Tsinghua University; Zhongguancun Laboratory), Kaiwen Shen (Tsinghua University)

Read More