James Fitts, Chris Fennel (Walmart)

Red Team campaigns simulate real adversaries and provide real value to the organization by exposing vulnerable infrastructure and processes that need to be improved. The challenge is that as organizations scale in size, time between campaign retesting increases. This can lead to gaps in ensuring coverage and finding emerging issues. Automation and simulation of adversarial attacks can be created to address the scale problem. Collecting libraries of Tactics, Techniques and Procedures (TTPs) and testing them via adversarial emulation software. Unfortunately, automation lacks feedback and cannot analyze the data in real time with each test.

To address this problem, we introduce RAMPART (Repeated And Measured Post Access Red Teaming). RAMPART campaigns are very quick campaigns (1 day) meant to bridge the gap between the automation of Red Team simulations and full blown Red Team campaigns. The speed of these campaigns comes from pre-built playbooks backed by Cyber Threat Intelligence (CTI) research. This approach enables a level of freedom to make decisions based on the data the red team analyst sees from their tooling and allows testing further in the attack chain to test detections that could be missed otherwise.

View More Papers

Resilient Routing for Low Earth Orbit Mega-Constellation Networks

Alexander Kedrowitsch (Virginia Tech), Jonathan Black (Virginia Tech) Daphne Yao (Virginia Tech)

Read More

Towards Precise Reporting of Cryptographic Misuses

Yikang Chen (The Chinese University of Hong Kong), Yibo Liu (Arizona State University), Ka Lok Wu (The Chinese University of Hong Kong), Duc V Le (Visa Research), Sze Yiu Chau (The Chinese University of Hong Kong)

Read More

CrowdGuard: Federated Backdoor Detection in Federated Learning

Phillip Rieger (Technical University of Darmstadt), Torsten Krauß (University of Würzburg), Markus Miettinen (Technical University of Darmstadt), Alexandra Dmitrienko (University of Würzburg), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

Attributions for ML-based ICS Anomaly Detection: From Theory to...

Clement Fung (Carnegie Mellon University), Eric Zeng (Carnegie Mellon University), Lujo Bauer (Carnegie Mellon University)

Read More