Johnathan Wilkes, John Anny (Palo Alto Networks)

By embracing automation, organizations can transcend manual limitations to reduce mean time to response and address exposures consistently across their cybersecurity infrastructure. In the dynamic realm of cybersecurity, swiftly addressing externally discovered exposures is paramount, as each represents a ticking time bomb. A paradigm shift towards automation to enhance speed, efficiency, and uniformity in the remediation process is needed to answer the question, "You found the exposure, now what?". Traditional manual approaches are not only time-consuming but also prone to human error, underscoring the need for a comprehensive, automated solution. Acknowledging the diversity of exposures and the array of security tools, we will propose how to remediate common external exposures, such as open ports and dangling domains. The transformative nature of this shift is crucial, particularly in the context of multiple cloud platforms with distinct data enrichment and remediation capabilities.

View More Papers

Work-in-Progress: A Large-Scale Long-term Analysis of Online Fraud across...

Yi Han, Shujiang Wu, Mengmeng Li, Zixi Wang, and Pengfei Sun (F5)

Read More

IRRedicator: Pruning IRR with RPKI-Valid BGP Insights

Minhyeok Kang (Seoul National University), Weitong Li (Virginia Tech), Roland van Rijswijk-Deij (University of Twente), Ted "Taekyoung" Kwon (Seoul National University), Taejoong Chung (Virginia Tech)

Read More

EnclaveFuzz: Finding Vulnerabilities in SGX Applications

Liheng Chen (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences; Institute for Network Science and Cyberspace of Tsinghua University), Zheming Li (Institute for Network Science and Cyberspace of Tsinghua University), Zheyu Ma (Institute for Network Science and Cyberspace of Tsinghua University), Yuan Li (Tsinghua University),…

Read More

WIP: Threat Modeling Laser-Induced Acoustic Interference in Computer Vision-Assisted...

Nina Shamsi (Northeastern University), Kaeshav Chandrasekar, Yan Long, Christopher Limbach (University of Michigan), Keith Rebello (Boeing), Kevin Fu (Northeastern University)

Read More