Weiheng Bai (University of Minnesota), Qiushi Wu (IBM Research), Kefu Wu, Kangjie Lu (University of Minnesota)

In recent years, large language models (LLMs) have been widely used in security-related tasks, such as security bug identification and patch analysis. The effectiveness of LLMs in these tasks is often influenced by the construction of appropriate prompts. Some state-of-the-art research has proposed multiple factors to improve the effectiveness of building prompts. However, the influence of prompt content on the accuracy and efficacy of LLMs in executing security tasks remains underexplored. Addressing this gap, our study conducts a comprehensive experiment, assessing various prompt methodologies in the context of security-related tasks. We employ diverse prompt structures and contents and evaluate their impact on the performance of LLMs in security-related tasks. Our findings suggest that appropriately modifying prompt structures and content can significantly enhance the performance of LLMs in specific security tasks. Conversely, improper prompt methods can markedly reduce LLM effectiveness. This research not only contributes to the understanding of prompt influence on LLMs but also serves as a valuable guide for future studies on prompt optimization for security tasks. Our code and dataset is available at Wayne-Bai/Prompt-Affection.

View More Papers

Certificate Transparency Revisited: The Public Inspections on Third-party Monitors

Aozhuo Sun (Institute of Information Engineering, Chinese Academy of Sciences), Jingqiang Lin (School of Cyber Science and Technology, University of Science and Technology of China), Wei Wang (Institute of Information Engineering, Chinese Academy of Sciences), Zeyan Liu (The University of Kansas), Bingyu Li (School of Cyber Science and Technology, Beihang University), Shushang Wen (School of…

Read More

Proof of Backhaul: Trustfree Measurement of Broadband Bandwidth

Peiyao Sheng (Kaleidoscope Blockchain Inc.), Nikita Yadav (Indian Institute of Science), Vishal Sevani (Kaleidoscope Blockchain Inc.), Arun Babu (Kaleidoscope Blockchain Inc.), Anand Svr (Kaleidoscope Blockchain Inc.), Himanshu Tyagi (Indian Institute of Science), Pramod Viswanath (Kaleidoscope Blockchain Inc.)

Read More

VPN Awareness and Misconceptions: A Comparative Study in Canadian...

Lachlan Moore, Tatsuya Mori (Waseda University, NICT)

Read More

Securing EV charging system against Physical-layer Signal Injection Attack...

Soyeon Son (Korea University) Kyungho Joo (Korea University) Wonsuk Choi (Korea University) Dong Hoon Lee (Korea University)

Read More