Weiheng Bai (University of Minnesota), Qiushi Wu (IBM Research), Kefu Wu, Kangjie Lu (University of Minnesota)

In recent years, large language models (LLMs) have been widely used in security-related tasks, such as security bug identification and patch analysis. The effectiveness of LLMs in these tasks is often influenced by the construction of appropriate prompts. Some state-of-the-art research has proposed multiple factors to improve the effectiveness of building prompts. However, the influence of prompt content on the accuracy and efficacy of LLMs in executing security tasks remains underexplored. Addressing this gap, our study conducts a comprehensive experiment, assessing various prompt methodologies in the context of security-related tasks. We employ diverse prompt structures and contents and evaluate their impact on the performance of LLMs in security-related tasks. Our findings suggest that appropriately modifying prompt structures and content can significantly enhance the performance of LLMs in specific security tasks. Conversely, improper prompt methods can markedly reduce LLM effectiveness. This research not only contributes to the understanding of prompt influence on LLMs but also serves as a valuable guide for future studies on prompt optimization for security tasks. Our code and dataset is available at Wayne-Bai/Prompt-Affection.

View More Papers

Stacking up the LLM Risks: Applied Machine Learning Security

Dr. Gary McGraw, Berryville Institute of Machine Learning

Read More

Scrappy: SeCure Rate Assuring Protocol with PrivacY

Kosei Akama (Keio University), Yoshimichi Nakatsuka (ETH Zurich), Masaaki Sato (Tokai University), Keisuke Uehara (Keio University)

Read More

AnonPSI: An Anonymity Assessment Framework for PSI

Bo Jiang (TikTok Inc.), Jian Du (TikTok Inc.), Qiang Yan (TikTok Inc.)

Read More

Acoustic Keystroke Leakage on Smart Televisions

Tejas Kannan (University of Chicago), Synthia Qia Wang (University of Chicago), Max Sunog (University of Chicago), Abraham Bueno de Mesquita (University of Chicago Laboratory Schools), Nick Feamster (University of Chicago), Henry Hoffmann (University of Chicago)

Read More