Weiheng Bai (University of Minnesota), Qiushi Wu (IBM Research), Kefu Wu, Kangjie Lu (University of Minnesota)

In recent years, large language models (LLMs) have been widely used in security-related tasks, such as security bug identification and patch analysis. The effectiveness of LLMs in these tasks is often influenced by the construction of appropriate prompts. Some state-of-the-art research has proposed multiple factors to improve the effectiveness of building prompts. However, the influence of prompt content on the accuracy and efficacy of LLMs in executing security tasks remains underexplored. Addressing this gap, our study conducts a comprehensive experiment, assessing various prompt methodologies in the context of security-related tasks. We employ diverse prompt structures and contents and evaluate their impact on the performance of LLMs in security-related tasks. Our findings suggest that appropriately modifying prompt structures and content can significantly enhance the performance of LLMs in specific security tasks. Conversely, improper prompt methods can markedly reduce LLM effectiveness. This research not only contributes to the understanding of prompt influence on LLMs but also serves as a valuable guide for future studies on prompt optimization for security tasks. Our code and dataset is available at Wayne-Bai/Prompt-Affection.

View More Papers

SigmaDiff: Semantics-Aware Deep Graph Matching for Pseudocode Diffing

Lian Gao (University of California Riverside), Yu Qu (University of California Riverside), Sheng Yu (University of California, Riverside & Deepbits Technology Inc.), Yue Duan (Singapore Management University), Heng Yin (University of California, Riverside & Deepbits Technology Inc.)

Read More

Exploiting Diagnostic Protocol Vulnerabilities on Embedded Networks in Commercial...

Carson Green, Rik Chatterjee, Jeremy Daily (Colorado State University)

Read More

Transforming Raw Authentication Logs into Interpretable Events

Seth Hastings, Tyler Moore, Corey Bolger, Philip Schumway (University of Tulsa)

Read More

Make your IoT environments robust against adversarial machine learning...

Hamed Haddadpajouh (University of Guelph), Ali Dehghantanha (University of Guelph)

Read More