Hyeongjun Choi, Young Eun Kwon, Ji Won Yoon (Korea University)

This paper presents mmProcess, a novel phasebased approach for speech reconstruction using millimeterwave (mmWave) technology, offering an alternative to existing Doppler-based and deep learning-dependent methods. By leveraging the phase variations in mmWave signals, mmProcess enables precise detection of fine vibrations caused by sound, facilitating accurate speech reconstruction without the need for large training datasets, prior knowledge, or complex neural networks. This eliminates the limitations of deep learning approaches, such as degraded performance with unseen languages and the significant time and cost required for system development. mmProcess combines advanced signal processing techniques, including range processing, phase unwrapping, and noise filtering, to transform raw mmWave radar data into high-fidelity speech signals. Experimental evaluations validate the effectiveness of the method, demonstrating its capability to operate in challenging scenarios while maintaining adaptability and cost efficiency.

View More Papers

Towards LLM-Assisted Vulnerability Detection and Repair for Open-Source 5G...

Rupam Patir (University at Buffalo), Qiqing Huang (University at Buffalo), Keyan Guo (University at Buffalo), Wanda Guo (Texas A&M University), Guofei Gu (Texas A&M University), Haipeng Cai (University at Buffalo), Hongxin Hu (University at Buffalo)

Read More

LeoCommon – A Ground Station Observatory Network for LEO...

Eric Jedermann, Martin Böh (University of Kaiserslautern), Martin Strohmeier (armasuisse Science & Technology), Vincent Lenders (Cyber-Defence Campus, armasuisse Science & Technology), Jens Schmitt (University of Kaiserslautern)

Read More

Silence False Alarms: Identifying Anti-Reentrancy Patterns on Ethereum to...

Qiyang Song (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences), Heqing Huang (Institute of Information Engineering, Chinese Academy of Sciences), Xiaoqi Jia (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences), Yuanbo Xie (Institute of Information…

Read More

Manifoldchain: Maximizing Blockchain Throughput via Bandwidth-Clustered Sharding

Chunjiang Che (The Hong Kong University of Science and Technology (Guangzhou)), Songze Li (Southeast University), Xuechao Wang (The Hong Kong University of Science and Technology (Guangzhou))

Read More