Aishwarya Jawne (Center for Connected Autonomy & AI, Florida Atlantic University), Georgios Sklivanitis (Center for Connected Autonomy & AI, Florida Atlantic University), Dimitris A. Pados (Center for Connected Autonomy & AI, Florida Atlantic University), Elizabeth Serena Bentley (Air Force Research Laboratory)

As 5G networks expand to support increasingly complex and diverse applications, ensuring robust identification and authentication of user devices has become a critical requirement for physical layer security. This paper investigates the potential of machine learning techniques for radio frequency (RF) fingerprinting as a scalable solution for identifying and authorizing access to trusted user devices as well as detecting rogue user devices in 5G networks. Specifically, we evaluate the performance of three prominent deep learning architectures— ResNet, Transformer, and LSTM — across various configurations, including spectrogram and raw IQ slice inputs made from varying packet sizes. The results demonstrate that ResNet models, when paired with spectrogram inputs, achieve the highest classification accuracy and scalability, while effectively addressing challenges such as the Next-Day Effect. Contrary to existing works, which focus on training deep neural networks (DNNs) for device classification, we highlight the critical role of spectrograms in capturing distinct hardware impairments when used to train DNNs for RF fingerprint extraction. These RF fingerprints are then used to distinguish between trusted and rogue 5G devices, as well as for device classification and identification. By identifying the optimal configurations for these tasks and exploring their applicability to real-world datasets collected from an outdoor software-defined radio testbed, this paper provides a pathway for integrating AI-driven radio frequency fingerprinting for authentication of user devices in 5G and FutureG networks as a cornerstone for enhanced physical layer security.

View More Papers

”Who is Trying to Access My Account?” Exploring User...

Tongxin Wei (Nankai University), Ding Wang (Nankai University), Yutong Li (Nankai University), Yuehuan Wang (Nankai University)

Read More

Kronos: A Secure and Generic Sharding Blockchain Consensus with...

Yizhong Liu (Beihang University), Andi Liu (Beihang University), Yuan Lu (Institute of Software Chinese Academy of Sciences), Zhuocheng Pan (Beihang University), Yinuo Li (Xi’an Jiaotong University), Jianwei Liu (Beihang University), Song Bian (Beihang University), Mauro Conti (University of Padua)

Read More

Heimdall: Towards Risk-Aware Network Management Outsourcing

Yuejie Wang (Peking University), Qiutong Men (New York University), Yongting Chen (New York University Shanghai), Jiajin Liu (New York University Shanghai), Gengyu Chen (Carnegie Mellon University), Ying Zhang (Meta), Guyue Liu (Peking University), Vyas Sekar (Carnegie Mellon University)

Read More

SCAMMAGNIFIER: Piercing the Veil of Fraudulent Shopping Website Campaigns

Marzieh Bitaab (Arizona State University), Alireza Karimi (Arizona State University), Zhuoer Lyu (Arizona State University), Adam Oest (Amazon), Dhruv Kuchhal (Amazon), Muhammad Saad (X Corp.), Gail-Joon Ahn (Arizona State University), Ruoyu Wang (Arizona State University), Tiffany Bao (Arizona State University), Yan Shoshitaishvili (Arizona State University), Adam Doupé (Arizona State University)

Read More