Jonathan Crussell (Sandia National Laboratories)

Malware analysis relies on evolving tools that undergo continuous improvement and refinement. One such tool is Ghidra, released as open-source in 2019, which has seen 39 public releases and 13,000 commits as of October 2024. In this paper, we examine the impact of these updates on code similarity analysis for the same set of input files. Additionally, we measure how the underlying version of Ghidra affects simple metrics such as analysis time, error counts, and the number of functions identified. Our case studies reveal that Ghidra’s effectiveness varies depending on the specific file analyzed, highlighting the importance of context in evaluating tool performance.
We do not yet have an answer to the question posed in the title of this paper. In general, Ghidra has certainly improved in the years since it was released. Developers have fixed countless bugs, added substantial new features, and supported several new program formats. However, we observe that better is highly nuanced. We encourage the community to approach version upgrades with caution, as the latest release may not always provide superior results for every use case. By fostering a nuanced understanding of Ghidra’s advancements, we aim to contribute to more informed decision-making regarding tool adoption and usage in malware analysis and other binary analysis domains.

View More Papers

CLIBE: Detecting Dynamic Backdoors in Transformer-based NLP Models

Rui Zeng (Zhejiang University), Xi Chen (Zhejiang University), Yuwen Pu (Zhejiang University), Xuhong Zhang (Zhejiang University), Tianyu Du (Zhejiang University), Shouling Ji (Zhejiang University)

Read More

PhantomLiDAR: Cross-modality Signal Injection Attacks against LiDAR

Zizhi Jin (Zhejiang University), Qinhong Jiang (Zhejiang University), Xuancun Lu (Zhejiang University), Chen Yan (Zhejiang University), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejiang University)

Read More

Oreo: Protecting ASLR Against Microarchitectural Attacks

Shixin Song (Massachusetts Institute of Technology), Joseph Zhang (Massachusetts Institute of Technology), Mengjia Yan (Massachusetts Institute of Technology)

Read More

Secure Data Analytics in Apache Spark with Fine-grained Policy...

Byeongwook Kim (Seoul National University), Jaewon Hur (Seoul National University), Adil Ahmad (Arizona State University), Byoungyoung Lee (Seoul National University)

Read More