Ahmed Mostafa, Raisul Arefin Nahid, Samuel Mulder (Auburn University)

Tokenization is fundamental in assembly code analysis, impacting intrinsic characteristics like vocabulary size, semantic coverage, and extrinsic performance in downstream tasks. Despite its significance, tokenization in the context of assembly code remains an underexplored area. This study aims to address this gap by evaluating the intrinsic properties of Natural Language Processing (NLP) tokenization models and parameter choices, such as vocabulary size. We explore preprocessing customization options and pre-tokenization rules tailored to the unique characteristics of assembly code. Additionally, we assess their impact on downstream tasks like function signature prediction—a critical problem in binary code analysis.
To this end, we conduct a thorough study on various tokenization models, systematically analyzing their efficiency in encoding assembly instructions and capturing semantic nuances. Through intrinsic evaluations, we compare tokenizers based on tokenization efficiency, vocabulary compression, and representational fidelity for assembly code. Using state-of-the-art pre-trained models such as the decoder-only Large Language Model (LLM) Llama 3.2, the encoder-only transformer BERT, and the encoderdecoder model BART, we evaluate the effectiveness of these tokenizers across multiple performance metrics. Preliminary findings indicate that tokenizer choice significantly influences downstream performance, with intrinsic metrics providing partial but incomplete predictability of extrinsic evaluation outcomes. These results reveal complex trade-offs between intrinsic tokenizer properties and their utility in practical assembly code tasks. Ultimately, this study provides valuable insights into optimizing tokenization models for low-level code analysis, contributing to the robustness and scalability of Natural Language Model (NLM)-based binary analysis workflows.

View More Papers

The hard things about analyzing 1’s and 0’s...

Dr. David Brumley, Carnegie Mellon University - ForAllSecure

Read More

Cross-Origin Web Attacks via HTTP/2 Server Push and Signed...

Pinji Chen (Tsinghua University), Jianjun Chen (Tsinghua University & Zhongguancun Laboratory), Mingming Zhang (Zhongguancun Laboratory), Qi Wang (Tsinghua University), Yiming Zhang (Tsinghua University), Mingwei Xu (Tsinghua University), Haixin Duan (Tsinghua University)

Read More

B2R2: Building an Efficient Front-End for Binary Analysis

Minkyu Jung (KAIST), Soomin Kim (KAIST), HyungSeok Han (KAIST), Jaeseung Choi (KAIST), Sang Kil Cha (KAIST)

Read More

On the Realism of LiDAR Spoofing Attacks against Autonomous...

Takami Sato (University of California, Irvine), Ryo Suzuki (Keio University), Yuki Hayakawa (Keio University), Kazuma Ikeda (Keio University), Ozora Sako (Keio University), Rokuto Nagata (Keio University), Ryo Yoshida (Keio University), Qi Alfred Chen (University of California, Irvine), Kentaro Yoshioka (Keio University)

Read More