Ahmed Mostafa, Raisul Arefin Nahid, Samuel Mulder (Auburn University)

Tokenization is fundamental in assembly code analysis, impacting intrinsic characteristics like vocabulary size, semantic coverage, and extrinsic performance in downstream tasks. Despite its significance, tokenization in the context of assembly code remains an underexplored area. This study aims to address this gap by evaluating the intrinsic properties of Natural Language Processing (NLP) tokenization models and parameter choices, such as vocabulary size. We explore preprocessing customization options and pre-tokenization rules tailored to the unique characteristics of assembly code. Additionally, we assess their impact on downstream tasks like function signature prediction—a critical problem in binary code analysis.
To this end, we conduct a thorough study on various tokenization models, systematically analyzing their efficiency in encoding assembly instructions and capturing semantic nuances. Through intrinsic evaluations, we compare tokenizers based on tokenization efficiency, vocabulary compression, and representational fidelity for assembly code. Using state-of-the-art pre-trained models such as the decoder-only Large Language Model (LLM) Llama 3.2, the encoder-only transformer BERT, and the encoderdecoder model BART, we evaluate the effectiveness of these tokenizers across multiple performance metrics. Preliminary findings indicate that tokenizer choice significantly influences downstream performance, with intrinsic metrics providing partial but incomplete predictability of extrinsic evaluation outcomes. These results reveal complex trade-offs between intrinsic tokenizer properties and their utility in practical assembly code tasks. Ultimately, this study provides valuable insights into optimizing tokenization models for low-level code analysis, contributing to the robustness and scalability of Natural Language Model (NLM)-based binary analysis workflows.

View More Papers

Do We Really Need to Design New Byzantine-robust Aggregation...

Minghong Fang (University of Louisville), Seyedsina Nabavirazavi (Florida International University), Zhuqing Liu (University of North Texas), Wei Sun (Wichita State University), Sundararaja Iyengar (Florida International University), Haibo Yang (Rochester Institute of Technology)

Read More

Transparency or Information Overload? Evaluating Users’ Comprehension and Perceptions...

Xiaoyuan Wu (Carnegie Mellon University), Lydia Hu (Carnegie Mellon University), Eric Zeng (Carnegie Mellon University), Hana Habib (Carnegie Mellon University), Lujo Bauer (Carnegie Mellon University)

Read More

PowerRadio: Manipulate Sensor Measurement via Power GND Radiation

Yan Jiang (Zhejiang University), Xiaoyu Ji (Zhejiang University), Yancheng Jiang (Zhejiang University), Kai Wang (Zhejiang University), Chenren Xu (Peking University), Wenyuan Xu (Zhejiang University)

Read More

BULKHEAD: Secure, Scalable, and Efficient Kernel Compartmentalization with PKS

Yinggang Guo (State Key Laboratory for Novel Software Technology, Nanjing University; University of Minnesota), Zicheng Wang (State Key Laboratory for Novel Software Technology, Nanjing University), Weiheng Bai (University of Minnesota), Qingkai Zeng (State Key Laboratory for Novel Software Technology, Nanjing University), Kangjie Lu (University of Minnesota)

Read More