Ahmed Mostafa, Raisul Arefin Nahid, Samuel Mulder (Auburn University)

Tokenization is fundamental in assembly code analysis, impacting intrinsic characteristics like vocabulary size, semantic coverage, and extrinsic performance in downstream tasks. Despite its significance, tokenization in the context of assembly code remains an underexplored area. This study aims to address this gap by evaluating the intrinsic properties of Natural Language Processing (NLP) tokenization models and parameter choices, such as vocabulary size. We explore preprocessing customization options and pre-tokenization rules tailored to the unique characteristics of assembly code. Additionally, we assess their impact on downstream tasks like function signature prediction—a critical problem in binary code analysis.
To this end, we conduct a thorough study on various tokenization models, systematically analyzing their efficiency in encoding assembly instructions and capturing semantic nuances. Through intrinsic evaluations, we compare tokenizers based on tokenization efficiency, vocabulary compression, and representational fidelity for assembly code. Using state-of-the-art pre-trained models such as the decoder-only Large Language Model (LLM) Llama 3.2, the encoder-only transformer BERT, and the encoderdecoder model BART, we evaluate the effectiveness of these tokenizers across multiple performance metrics. Preliminary findings indicate that tokenizer choice significantly influences downstream performance, with intrinsic metrics providing partial but incomplete predictability of extrinsic evaluation outcomes. These results reveal complex trade-offs between intrinsic tokenizer properties and their utility in practical assembly code tasks. Ultimately, this study provides valuable insights into optimizing tokenization models for low-level code analysis, contributing to the robustness and scalability of Natural Language Model (NLM)-based binary analysis workflows.

View More Papers

TBD

Ryo Ichikawa, Captain of CTF Team TokyoWesterns

Read More

Alba: The Dawn of Scalable Bridges for Blockchains

Giulia Scaffino (TU Wien), Lukas Aumayr (TU Wien), Mahsa Bastankhah (Princeton University), Zeta Avarikioti (TU Wien), Matteo Maffei (TU Wien)

Read More

”Who is Trying to Access My Account?” Exploring User...

Tongxin Wei (Nankai University), Ding Wang (Nankai University), Yutong Li (Nankai University), Yuehuan Wang (Nankai University)

Read More

Ctrl+Alt+Deceive: Quantifying User Exposure to Online Scams

Platon Kotzias (Norton Research Group, BforeAI), Michalis Pachilakis (Norton Research Group, Computer Science Department University of Crete), Javier Aldana Iuit (Norton Research Group), Juan Caballero (IMDEA Software Institute), Iskander Sanchez-Rola (Norton Research Group), Leyla Bilge (Norton Research Group)

Read More