Shangzhi Xu (The University of New South Wales), Jialiang Dong (The University of New South Wales), Weiting Cai (Delft University of Technology), Juanru Li (Feiyu Tech), Arash Shaghaghi (The University of New South Wales), Nan Sun (The University of New South Wales), Siqi Ma (The University of New South Wales)

Nowadays, software development progresses
rapidly to incorporate new features. To facilitate such growth
and provide convenience for developers when creating and
updating software, reusing open-source software (i.e., thirdparty
library reuses) has become one of the most effective
and efficient methods. Unfortunately, the practice of reusing
third-party libraries (TPLs) can also introduce vulnerabilities
(known as 1-day vulnerabilities) because of the low maintenance
of TPLs, resulting in many vulnerable versions remaining in
use. If the software incorporating these TPLs fails to detect the
introduced vulnerabilities and leads to delayed updates, it will
exacerbate the security risks. However, the complicated code
dependencies and flexibility of TPL reuses make the detection of
1-day vulnerability a challenging task. To support developers in
securely reusing TPLs during software development, we design
and implement VULTURE, an effective and efficient detection
tool, aiming at identifying 1-day vulnerabilities that arise from
the reuse of vulnerable TPLs. It first executes a database creation
method, TPLFILTER, which leverages the Large Language
Model (LLM) to automatically build a unique database for the
targeted platform. Instead of relying on code-level similarity
comparison, VULTURE employs hashing-based comparison to
explore the dependencies among the collected TPLs and identify
the similarities between the TPLs and the target projects.
Recognizing that developers have the flexibility to reuse TPLs
exactly or in a custom manner, VULTURE separately conducts
version-based comparison and chunk-based analysis to capture
fine-grained semantic features at the function levels. We applied
VULTURE to 10 real-world projects to assess its effectiveness
and efficiency in detecting 1-day vulnerabilities. VULTURE
successfully identified 175 vulnerabilities from 178 reused TPLs.

View More Papers

PolicyPulse: Precision Semantic Role Extraction for Enhanced Privacy Policy...

Andrick Adhikari (University of Denver), Sanchari Das (University of Denver), Rinku Dewri (University of Denver)

Read More

Towards LLM-Assisted Vulnerability Detection and Repair for Open-Source 5G...

Rupam Patir (University at Buffalo), Qiqing Huang (University at Buffalo), Keyan Guo (University at Buffalo), Wanda Guo (Texas A&M University), Guofei Gu (Texas A&M University), Haipeng Cai (University at Buffalo), Hongxin Hu (University at Buffalo)

Read More

Careful About What App Promotion Ads Recommend! Detecting and...

Shang Ma (University of Notre Dame), Chaoran Chen (University of Notre Dame), Shao Yang (Case Western Reserve University), Shifu Hou (University of Notre Dame), Toby Jia-Jun Li (University of Notre Dame), Xusheng Xiao (Arizona State University), Tao Xie (Peking University), Yanfang Ye (University of Notre Dame)

Read More

SHAFT: Secure, Handy, Accurate and Fast Transformer Inference

Andes Y. L. Kei (Chinese University of Hong Kong), Sherman S. M. Chow (Chinese University of Hong Kong)

Read More