Varun Gadey (University of Würzburg), Melanie Goetz (University of Würzburg), Christoph Sendner (University of Würzburg), Sampo Sovio (Huawei Technologies), Alexandra Dmitrienko (University of Wuerzburg)

Modern systems increasingly rely on Trusted Execution Environments (TEEs), such as Intel SGX and ARM TrustZone, to securely isolate sensitive code and reduce the Trusted Computing Base (TCB).
However, identifying the precise regions of code especially those involving cryptographic logic that should reside within a TEE remains challenging, as it requires deep manual inspection and is not supported by automated tools yet. To solve this open problem, we propose LLM based Code Annotation Logic (LLM-CAL), a tool that automates the identification of security-sensitive code regions at scale by leveraging most recent and advanced Large Language Models (LLMs). Our approach leverages foundational LLMs (Gemma-2B, CodeGemma-2B, and LLaMA-7B), which we fine-tuned using a newly collected and manually labeled dataset of over 4,000 C source files. We encode local context features, global semantic information, and structural metadata into compact input sequences that guide the model in capturing subtle patterns of security sensitivity in code. The fine-tuning process is based on quantized LoRA—a parameter-efficient technique that introduces lightweight, trainable adapters into the LLM architecture. To support practical deployment, we developed a scalable pipeline for data preprocessing and inference. LLM-CAL achieves an F1 score of 98.40% and a recall of 97.50% in identifying sensitive and non-sensitive code. It represents the first effort to automate the annotation of cryptographic security-sensitive code for TEE-enabled platforms, aiming to minimize the Trusted Computing Base (TCB) and optimize TEE usage to enhance overall system security.

View More Papers

ThinkTrap: Denial-of-Service Attacks against Black-box LLM Services via Infinite...

Yunzhe Li (Shanghai Jiao Tong University), Jianan Wang (Shanghai Jiao Tong University), Hongzi Zhu (Shanghai Jiao Tong University), James Lin (Shanghai Jiao Tong University), Shan Chang (Donghua University), Minyi Guo (Shanghai Jiao Tong University)

Read More

TIPSO-GAN: Malicious Network Traffic Detection Using a Novel Optimized...

Ernest Akpaku (School of Computer Science and Communication Engineering, Jiangsu University), Jinfu Chen (School of Computer Science and Communication Engineering, Jiangsu University), Joshua Ofoeda (University of Professional Studies, Accra)

Read More

Constructive Noise Defeats Adversarial Noise: Adversarial Example Detection for...

Meng Shen (Beijing Institute of Technology), Jiangyuan Bi (Beijing Institute of Technology), Hao Yu (National University of Defense Technology), Zhenming Bai (Beijing Institute of Technology), Wei Wang (Xi'an Jiaotong University), Liehuang Zhu (Beijing Institute of Technology)

Read More