Jiayi Lin (The University of Hong Kong), Qingyu Zhang (The University of Hong Kong), Junzhe Li (The University of Hong Kong), Chenxin Sun (The University of Hong Kong), Hao Zhou (The Hong Kong Polytechnic University), Changhua Luo (The University of Hong Kong), Chenxiong Qian (The University of Hong Kong)

Software libraries are foundational components in modern software ecosystems. Vulnerabilities within these libraries pose significant security threats. Fuzzing is a widely used technique for uncovering software vulnerabilities. However, its application to software libraries poses considerable challenges, necessitating carefully crafted drivers that reflect diverse yet correct API usages. Existing works on automatic library fuzzing either suffer from high false positives due to API misuse caused by arbitrarily generated API sequences, or fail to produce diverse API sequences by overly relying on existing code snippets that express restricted API usages, thus missing deeper API vulnerabilities.
This work proposes NEXZZER, a new fuzzer that automatically detects vulnerabilities in libraries. NEXZZER employs a hybrid relation learning strategy to continuously infer and evolve API relations, incorporating a novel driver architecture to augment the testing coverage of libraries and facilitate deep vulnerability discovery. We evaluated NEXZZER across 18 libraries and the Google Fuzzer Test Suite. The results demonstrate its considerable advantages in code coverage and vulnerability-finding capabilities compared to prior works. NEXZZER can also automatically identify and filter out most API misuse crashes. Moreover, NEXZZER discovered 27 previously unknown vulnerabilities in well-tested libraries, including OpenSSL and libpcre2. At the time of writing, developers have confirmed 24 of them, and 9 were fixed because of our reports.

View More Papers

Vision: Retiring Scenarios — Enabling Ecologically Valid Measurement in...

Oliver D. Reithmaier (Leibniz University Hannover), Thorsten Thiel (Atmina Solutions), Anne Vonderheide (Leibniz University Hannover), Markus Dürmuth (Leibniz University Hannover)

Read More

ReDAN: An Empirical Study on Remote DoS Attacks against...

Xuewei Feng (Tsinghua University), Yuxiang Yang (Tsinghua University), Qi Li (Tsinghua University), Xingxiang Zhan (Zhongguancun Lab), Kun Sun (George Mason University), Ziqiang Wang (Southeast University), Ao Wang (Southeast University), Ganqiu Du (China Software Testing Center), Ke Xu (Tsinghua University)

Read More

Defending Against Membership Inference Attacks on Iteratively Pruned Deep...

Jing Shang (Beijing Jiaotong University), Jian Wang (Beijing Jiaotong University), Kailun Wang (Beijing Jiaotong University), Jiqiang Liu (Beijing Jiaotong University), Nan Jiang (Beijing University of Technology), Md Armanuzzaman (Northeastern University), Ziming Zhao (Northeastern University)

Read More

Enhancing Security in Third-Party Library Reuse – Comprehensive Detection...

Shangzhi Xu (The University of New South Wales), Jialiang Dong (The University of New South Wales), Weiting Cai (Delft University of Technology), Juanru Li (Feiyu Tech), Arash Shaghaghi (The University of New South Wales), Nan Sun (The University of New South Wales), Siqi Ma (The University of New South Wales)

Read More