Jiayi Lin (The University of Hong Kong), Qingyu Zhang (The University of Hong Kong), Junzhe Li (The University of Hong Kong), Chenxin Sun (The University of Hong Kong), Hao Zhou (The Hong Kong Polytechnic University), Changhua Luo (The University of Hong Kong), Chenxiong Qian (The University of Hong Kong)

Software libraries are foundational components in modern software ecosystems. Vulnerabilities within these libraries pose significant security threats. Fuzzing is a widely used technique for uncovering software vulnerabilities. However, its application to software libraries poses considerable challenges, necessitating carefully crafted drivers that reflect diverse yet correct API usages. Existing works on automatic library fuzzing either suffer from high false positives due to API misuse caused by arbitrarily generated API sequences, or fail to produce diverse API sequences by overly relying on existing code snippets that express restricted API usages, thus missing deeper API vulnerabilities.
This work proposes NEXZZER, a new fuzzer that automatically detects vulnerabilities in libraries. NEXZZER employs a hybrid relation learning strategy to continuously infer and evolve API relations, incorporating a novel driver architecture to augment the testing coverage of libraries and facilitate deep vulnerability discovery. We evaluated NEXZZER across 18 libraries and the Google Fuzzer Test Suite. The results demonstrate its considerable advantages in code coverage and vulnerability-finding capabilities compared to prior works. NEXZZER can also automatically identify and filter out most API misuse crashes. Moreover, NEXZZER discovered 27 previously unknown vulnerabilities in well-tested libraries, including OpenSSL and libpcre2. At the time of writing, developers have confirmed 24 of them, and 9 were fixed because of our reports.

View More Papers

KernelSnitch: Side Channel-Attacks on Kernel Data Structures

Lukas Maar (Graz University of Technology), Jonas Juffinger (Graz University of Technology), Thomas Steinbauer (Graz University of Technology), Daniel Gruss (Graz University of Technology), Stefan Mangard (Graz University of Technology)

Read More

Wallbleed: A Memory Disclosure Vulnerability in the Great Firewall...

Shencha Fan (GFW Report), Jackson Sippe (University of Colorado Boulder), Sakamoto San (Shinonome Lab), Jade Sheffey (UMass Amherst), David Fifield (None), Amir Houmansadr (UMass Amherst), Elson Wedwards (None), Eric Wustrow (University of Colorado Boulder)

Read More

The Forking Way: When TEEs Meet Consensus

Annika Wilde (Ruhr University Bochum), Tim Niklas Gruel (Ruhr University Bochum), Claudio Soriente (NEC Laboratories Europe), Ghassan Karame (Ruhr University Bochum)

Read More

Ring of Gyges: Accountable Anonymous Broadcast via Secret-Shared Shuffle

Wentao Dong (City University of Hong Kong), Peipei Jiang (Wuhan University; City University of Hong Kong), Huayi Duan (ETH Zurich), Cong Wang (City University of Hong Kong), Lingchen Zhao (Wuhan University), Qian Wang (Wuhan University)

Read More