Hongyu Lin (Zhejiang University), Yicheng Hu (Zhejiang University), Haitao Xu (Zhejiang University), Yanchen Lu (Zhejiang University), Mengxia Ren (Zhejiang University), Shuai Hao (Old Dominion University), Chuan Yue (Colorado School of Mines), Zhao Li (Hangzhou Yugu Technology), Fan Zhang (Zhejiang University), Yixin Jiang (Electric Power Research Institute)

Chameleon apps evade iOS App Store review by presenting legitimate functionality during submission while transforming into illicit variants post-installation. While prevalent, their underlying transformation methods and developer-user collusion dynamics remain poorly understood. Existing detection approaches, constrained by static analysis or metadata dependencies, prove ineffective against hybrid implementations, novel variants, or metadata-scarce instances. To address these limitations, we establish a curated dataset of 500 iOS Chameleon apps collected through covert distribution channels, enabling systematic identification of 10 categories of distinct transformation patterns (including 4 previously undocumented variants). Building upon these findings, we present ChameleoScan, the first LLM-driven automated UI exploration framework for reliable Chameleon app verification. The system maintains local decision interpretability while ensuring global detection consistency through its core innovation - predictive metadata analytics, semantic interface comprehension, and human-comparable interaction strategies. Comprehensive evaluation on 1,644 iOS apps demonstrates operational efficacy (9.85% detection rate, 92.59% precision), with findings formally acknowledged by Apple. Implementation and datasets are available at https://github.com/ChameleoScan.

View More Papers

SoK: Take a Deep Step into Linux Kernel Hardening...

Yinhao Hu (Huazhong University of Science and Technology & Zhongguancun Laboratory), Pengyu Ding (Huazhong University of Science and Technology & Zhongguancun Laboratory), Zhenpeng Lin (Independent Researcher), Dongliang Mu (Huazhong University of Science and Technology), Yuan Li (Zhongguancun Laboratory)

Read More

CtPhishCapture: Uncovering Credential-Theft-Based Phishing Scams Targeting Cryptocurrency Wallets

Hui Jiang (Tsinghua University and Baidu Inc), Zhenrui Zhang (Baidu Inc), Xiang Li (Nankai University), Yan Li (Tsinghua University), Anpeng Zhou (Tsinghua University), Chenghui Wu (Baidu Inc), Man Hou (Zhongguancun Laboratory), Jia Zhang (Tsinghua University), Zongpeng Li (Tsinghua University)

Read More