Ruixuan Li (Choudhury), Chaithanya Naik Mude (University of Wisconsin-Madison), Sanjay Das (The University of Texas at Dallas), Preetham Chandra Tikkireddi (University of Wisconsin-Madison), Swamit Tannu (University of Wisconsin, Madison), Kanad Basu (University of Texas at Dallas)

As quantum computing rapidly advances, its near-term applications are becoming increasingly evident. However, the high cost and under-utilization of quantum resources are prompting a shift from single-user to multi-user access models. In a multi-tenant environment, where multiple users share one quantum computer, protecting user confidentiality becomes crucial. The varied uses of quantum computers increase the risk that sensitive data encoded by one user could be compromised by others, rendering the protection of data integrity and confidentiality essential.
In the evolving quantum computing landscape, it is imperative to study these security challenges within the scope of realistic threat model assumptions,
wherein an adversarial user can mount practical attacks without relying on any heightened privileges afforded by physical access to a quantum computer or rogue cloud services.
In this paper, we demonstrate the potential of crosstalk as an attack vector for the first time on a Noisy Intermediate Scale Quantum (NISQ) machine, that an adversarial user can exploit within a multi-tenant quantum computing model.
The proposed side-channel attack is conducted with minimal and realistic adversarial privileges, with the overarching aim of uncovering the quantum algorithm being executed by a victim. Crosstalk signatures are used to estimate the presence of CNOT gates in the victim circuit, and subsequently, this information is encoded and classified by a graph-based learning model to identify the victim quantum algorithm. When evaluated on up to 336 benchmark circuits, our attack framework is found to be able to unveil the victim's quantum algorithm with up to 85.7% accuracy.

View More Papers

Time-varying Bottleneck Links in LEO Satellite Networks: Identification, Exploits,...

Yangtao Deng (Tsinghua University), Qian Wu (Tsinghua University), Zeqi Lai (Tsinghua University), Chenwei Gu (Tsinghua University), Hewu Li (Tsinghua University), Yuanjie Li (Tsinghua University), Jun Liu (Tsinghua University)

Read More

Distributed Function Secret Sharing and Applications

Pengzhi Xing (University of Electronic Science and Technology of China), Hongwei Li (University of Electronic Science and Technology of China), Meng Hao (Singapore Management University), Hanxiao Chen (University of Electronic Science and Technology of China), Jia Hu (University of Electronic Science and Technology of China), Dongxiao Liu (University of Electronic Science and Technology of China)

Read More

Automatic Insecurity: Exploring Email Auto-configuration in the Wild

Shushang Wen (School of Cyber Science and Technology, University of Science and Technology of China), Yiming Zhang (Tsinghua University), Yuxiang Shen (School of Cyber Science and Technology, University of Science and Technology of China), Bingyu Li (School of Cyber Science and Technology, Beihang University), Haixin Duan (Tsinghua University; Zhongguancun Laboratory), Jingqiang Lin (School of Cyber…

Read More

Privacy-Enhancing Technologies Against Physical-Layer and Link-Layer Device Tracking: Trends,...

Apolline Zehner (Universite libre de Bruxelles), Iness Ben Guirat (Universite libre de Bruxelles), Jan Tobias Muhlberg (Universite libre de Bruxelles)

Read More