Patrick Jauernig (Technical University of Darmstadt), Domagoj Jakobovic (University of Zagreb, Croatia), Stjepan Picek (Radboud University and TU Delft), Emmanuel Stapf (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Fuzzing is an automated software testing technique broadly adopted by the industry. A popular variant is mutation-based fuzzing, which discovers a large number of bugs in practice. While the research community has studied mutation-based fuzzing for years now, the algorithms' interactions within the fuzzer are highly complex and can, together with the randomness in every instance of a fuzzer, lead to unpredictable effects. Most efforts to improve this fragile interaction focused on optimizing seed scheduling. However, real-world results like Google's FuzzBench highlight that these approaches do not consistently show improvements in practice. Another approach to improve the fuzzing process algorithmically is optimizing mutation scheduling. Unfortunately, existing mutation scheduling approaches also failed to convince because of missing real-world improvements or too many user-controlled parameters whose configuration requires expert knowledge about the target program. This leaves the challenging problem of cleverly processing test cases and achieving a measurable improvement unsolved. We present DARWIN, a novel mutation scheduler and the first to show fuzzing improvements in a realistic scenario without the need to introduce additional user-configurable parameters, opening this approach to the broad fuzzing community. DARWIN uses an Evolution Strategy to systematically optimize and adapt the probability distribution of the mutation operators during fuzzing. We implemented a prototype based on the popular general-purpose fuzzer AFL. DARWIN significantly outperforms the state-of-the-art mutation scheduler and the AFL baseline in our own coverage experiment, in FuzzBench, and by finding 15 out of 21 bugs the fastest in the MAGMA benchmark. Finally, DARWIN found 20 unique bugs (including one novel bug), 66% more than AFL, in widely-used real-world applications.

View More Papers

Unlocking the Potential of Domain Aware Binary Analysis in...

Dr. Zhiqiang Lin (Distinguished Professor of Engineering at The Ohio State University)

Read More

Detection and Resolution of Control Decision Anomalies

Prof. Kang Shin (Kevin and Nancy O'Connor Professor of Computer Science, and the Founding Director of the Real-Time Computing Laboratory (RTCL) in the Electrical Engineering and Computer Science Department at the University of Michigan)

Read More

Cryptographic Oracle-based Conditional Payments

Varun Madathil (North Carolina State University), Sri Aravinda Krishnan Thyagarajan (NTT Research), Dimitrios Vasilopoulos (IMDEA Software Institute), Lloyd Fournier (None), Giulio Malavolta (Max Planck Institute for Security and Privacy), Pedro Moreno-Sanchez (IMDEA Software Institute)

Read More

On the Feasibility of Profiling Electric Vehicles through Charging...

Ankit Gangwal (IIIT Hyderabad), Aakash Jain (IIIT Hyderabad) and Mauro Conti (University of Padua)

Read More