Jing Shang (Beijing Jiaotong University), Jian Wang (Beijing Jiaotong University), Kailun Wang (Beijing Jiaotong University), Jiqiang Liu (Beijing Jiaotong University), Nan Jiang (Beijing University of Technology), Md Armanuzzaman (Northeastern University), Ziming Zhao (Northeastern University)

Model pruning is a technique for compressing deep learning models, and using an iterative way to prune the model can achieve better compression effects with lower utility loss. However, our analysis reveals that iterative pruning significantly increases model memorization, making the pruned models more vulnerable to membership inference attacks (MIAs). Unfortunately, the vast majority of existing defenses against MIAs are designed for original and unpruned models. In this paper, we propose a new framework WeMem to weaken memorization in the iterative pruning process. Specifically, our analysis identifies two important factors that increase memorization in iterative pruning, namely data reuse and inherent memorability. We consider the individual and combined impacts of both factors, forming three scenarios that lead to increased memorization in iteratively pruned models. We design three defense primitives based on these factors' characteristics. By combining these primitives, we propose methods tailored to each scenario to weaken memorization effectively. Comprehensive experiments under ten adaptive MIAs demonstrate the effectiveness of the proposed defenses. Moreover, our defenses outperform five existing defenses in terms of privacy-utility tradeoff and efficiency. Additionally, we enhance the proposed defenses to automatically adjust settings for optimal defense, improving their practicability.

View More Papers

CENSOR: Defense Against Gradient Inversion via Orthogonal Subspace Bayesian...

Kaiyuan Zhang (Purdue University), Siyuan Cheng (Purdue University), Guangyu Shen (Purdue University), Bruno Ribeiro (Purdue University), Shengwei An (Purdue University), Pin-Yu Chen (IBM Research AI), Xiangyu Zhang (Purdue University), Ninghui Li (Purdue University)

Read More

MTZK: Testing and Exploring Bugs in Zero-Knowledge (ZK) Compilers

Dongwei Xiao (The Hong Kong University of Science and Technology), Zhibo Liu (The Hong Kong University of Science and Technology), Yiteng Peng (The Hong Kong University of Science and Technology), Shuai Wang (The Hong Kong University of Science and Technology)

Read More

I know what you MEME! Understanding and Detecting Harmful...

Yong Zhuang (Wuhan University), Keyan Guo (University at Buffalo), Juan Wang (Wuhan University), Yiheng Jing (Wuhan University), Xiaoyang Xu (Wuhan University), Wenzhe Yi (Wuhan University), Mengda Yang (Wuhan University), Bo Zhao (Wuhan University), Hongxin Hu (University at Buffalo)

Read More

Wallbleed: A Memory Disclosure Vulnerability in the Great Firewall...

Shencha Fan (GFW Report), Jackson Sippe (University of Colorado Boulder), Sakamoto San (Shinonome Lab), Jade Sheffey (UMass Amherst), David Fifield (None), Amir Houmansadr (UMass Amherst), Elson Wedwards (None), Eric Wustrow (University of Colorado Boulder)

Read More