Jiayun Xu (Singapore Management University), Yingjiu Li (University of Oregon), Robert H. Deng (Singapore Management University)

A common problem in machine learning-based malware detection is that training data may contain noisy labels and it is challenging to make the training data noise-free at a large scale. To address this problem, we propose a generic framework to reduce the noise level of training data for the training of any machine learning-based Android malware detection. Our framework makes use of all intermediate states of two identical deep learning classification models during their training with a given noisy training dataset and generate a noise-detection feature vector for each input sample. Our framework then applies a set of outlier detection algorithms on all noise-detection feature vectors to reduce the noise level of the given training data before feeding it to any machine learning based Android malware detection approach. In our experiments with three different Android malware detection approaches, our framework can detect significant portions of wrong labels in different training datasets at different noise ratios, and improve the performance of Android malware detection approaches.

View More Papers

SOK: An Evaluation of Quantum Authentication Through Systematic Literature...

Ritajit Majumdar (Indian Statistical Institute), Sanchari Das (University of Denver)

Read More

icLibFuzzer: Isolated-context libFuzzer for Improving Fuzzer Comparability

Yu-Chuan Liang, Hsu-Chun Hsiao (National Taiwan University)

Read More

Vision-Based Two-Factor Authentication & Localization Scheme for Autonomous Vehicles

Anas Alsoliman, Marco Levorato, and Qi Alfred Chen (UC Irvine)

Read More

MINOS: A Lightweight Real-Time Cryptojacking Detection System

Faraz Naseem (Florida International University), Ahmet Aris (Florida International University), Leonardo Babun (Florida International University), Ege Tekiner (Florida International University), A. Selcuk Uluagac (Florida International University)

Read More