Marian Harbach (Google), Igor Bilogrevic (Google), Enrico Bacis (Google), Serena Chen (Google), Ravjit Uppal (Google), Andy Paicu (Google), Elias Klim (Google), Meggyn Watkins (Google), Balazs Engedy (Google)

A recent large-scale experiment conducted by Chrome has demonstrated that a "quieter" web permission prompt can reduce unwanted interruptions while only marginally affecting grant rates. However, the experiment and the partial roll-out were missing two important elements: (1) an effective and context-aware activation mechanism for such a quieter prompt, and (2) an analysis of user attitudes and sentiment towards such an intervention. In this paper, we address these two limitations by means of a novel ML-based activation mechanism -- and its real-world on-device deployment in Chrome -- and a large-scale user study with 13.1k participants from 156 countries. First, the telemetry-based results, computed on more than 20 million samples from Chrome users in-the-wild, indicate that the novel on-device ML-based approach is both extremely precise (>99% post-hoc precision) and has very high coverage (96% recall for notifications permission). Second, our large-scale, in-context user study shows that quieting is often perceived as helpful and does not cause high levels of unease for most respondents.

View More Papers

A Security and Usability Analysis of Local Attacks Against...

Tarun Kumar Yadav (Brigham Young University), Kent Seamons (Brigham Young University)

Read More

From Hardware Fingerprint to Access Token: Enhancing the Authentication...

Yue Xiao (Wuhan University), Yi He (Tsinghua University), Xiaoli Zhang (Zhejiang University of Technology), Qian Wang (Wuhan University), Renjie Xie (Tsinghua University), Kun Sun (George Mason University), Ke Xu (Tsinghua University), Qi Li (Tsinghua University)

Read More

“I used to live in Florida”: Exploring the Impact...

Imani N. S. Munyaka (University of California, San Diego), Daniel A Delgado, Juan Gilbert, Jaime Ruiz, Patrick Traynor (University of Florida)

Read More

LDR: Secure and Efficient Linux Driver Runtime for Embedded...

Huaiyu Yan (Southeast University), Zhen Ling (Southeast University), Haobo Li (Southeast University), Lan Luo (Anhui University of Technology), Xinhui Shao (Southeast University), Kai Dong (Southeast University), Ping Jiang (Southeast University), Ming Yang (Southeast University), Junzhou Luo (Southeast University, Nanjing, P.R. China), Xinwen Fu (University of Massachusetts Lowell)

Read More