Marian Harbach (Google), Igor Bilogrevic (Google), Enrico Bacis (Google), Serena Chen (Google), Ravjit Uppal (Google), Andy Paicu (Google), Elias Klim (Google), Meggyn Watkins (Google), Balazs Engedy (Google)

A recent large-scale experiment conducted by Chrome has demonstrated that a "quieter" web permission prompt can reduce unwanted interruptions while only marginally affecting grant rates. However, the experiment and the partial roll-out were missing two important elements: (1) an effective and context-aware activation mechanism for such a quieter prompt, and (2) an analysis of user attitudes and sentiment towards such an intervention. In this paper, we address these two limitations by means of a novel ML-based activation mechanism -- and its real-world on-device deployment in Chrome -- and a large-scale user study with 13.1k participants from 156 countries. First, the telemetry-based results, computed on more than 20 million samples from Chrome users in-the-wild, indicate that the novel on-device ML-based approach is both extremely precise (>99% post-hoc precision) and has very high coverage (96% recall for notifications permission). Second, our large-scale, in-context user study shows that quieting is often perceived as helpful and does not cause high levels of unease for most respondents.

View More Papers

WIP: Modeling and Detecting Falsified Vehicle Trajectories Under Data...

Jun Ying, Yiheng Feng (Purdue University), Qi Alfred Chen (University of California, Irvine), Z. Morley Mao (University of Michigan and Google)

Read More

Attributions for ML-based ICS Anomaly Detection: From Theory to...

Clement Fung (Carnegie Mellon University), Eric Zeng (Carnegie Mellon University), Lujo Bauer (Carnegie Mellon University)

Read More

QUACK: Hindering Deserialization Attacks via Static Duck Typing

Yaniv David (Columbia University), Neophytos Christou (Brown University), Andreas D. Kellas (Columbia University), Vasileios P. Kemerlis (Brown University), Junfeng Yang (Columbia University)

Read More

On Requirements and Concepts for TT&C Link Key Management

Christoph Bader (Airbus Defence & Space GmbH)

Read More