Hyun Bin Lee (University of Illinois at Urbana-Champaign), Tushar M. Jois (Johns Hopkins University), Christopher W. Fletcher (University of Illinois at Urbana-Champaign), Carl A. Gunter (University of Illinois at Urbana-Champaign)

Users can improve the security of remote communications by using Trusted Execution Environments (TEEs) to protect against direct introspection and tampering of sensitive data. This can even be done with applications coded in high-level languages with complex programming stacks such as R, Python, and Ruby. However, this creates a trade-off between programming convenience versus the risk of attacks using microarchitectural side channels.

In this paper, we argue that it is possible to address this problem for important applications by instrumenting a complex programming environment (like R) to produce a Data-Oblivious Transcript (DOT) that is explicitly designed to support computation that excludes side channels. Such a transcript is then evaluated on a Trusted Execution Environment (TEE) containing the sensitive data using a small trusted computing base called the Data-Oblivious Virtual Environment (DOVE).

To motivate the problem, we demonstrate a number of subtle side-channel vulnerabilities in the R language. We then provide an illustrative design and implementation of DOVE for R, creating the first side-channel resistant R programming stack. We demonstrate that the two-phase architecture provided by DOT generation and DOVE evaluation can provide practical support for complex programming languages with usable performance and high security assurances against side channels.

View More Papers

Denial-of-Service Attacks on C-V2X Networks

Natasa Trkulja, David Starobinski (Boston University), and Randall Berry (Northwestern University)

Read More

A Formal Analysis of the FIDO UAF Protocol

Haonan Feng (Beijing University of Posts and Telecommunications), Hui Li (Beijing University of Posts and Telecommunications), Xuesong Pan (Beijing University of Posts and Telecommunications), Ziming Zhao (University at Buffalo)

Read More

RandRunner: Distributed Randomness from Trapdoor VDFs with Strong Uniqueness

Philipp Schindler (SBA Research), Aljosha Judmayer (SBA Research), Markus Hittmeir (SBA Research), Nicholas Stifter (SBA Research, TU Wien), Edgar Weippl (Universität Wien)

Read More