Marcel Kneib (Robert Bosch GmbH), Oleg Schell (Bosch Engineering GmbH), Christopher Huth (Robert Bosch GmbH)

In vehicles, internal Electronic Control Units (ECUs) are increasingly prone to adversarial exploitation over wireless connections due to ongoing digitalization. Controlling an ECU allows an adversary to send messages to the internal vehicle bus and thereby to control various vehicle functions. Access to the Controller Area Network (CAN), the most widely used bus technology, is especially severe as it controls brakes and steering. However, state of the art receivers are not able to identify the sender of a frame. Retrofitting frame authenticity, e.g. through Message Authentication Codes (MACs), is only possible to a limited extent due to reduced bandwidth, low payload and limited computational resources. To address this problem, observation in analog differences of the CAN signal was proposed to determine the actual sender. These prior approaches, which exhibit good identification rates in some cases, require high sample rates and a high computational effort. With EASI we significantly reduce the required resources and at the same time show increased identification rates of 99.98% by having no false positives in a prototype structure and two series production vehicles. In comparison to the most lightweight approach so far, we have reduced the memory footprint and the computational requirements by a factor of 168 and 142, respectively. In addition, we show the feasibility of EASI and thus for the first time that sender identification is realizable using comprehensive signal characteristics on resource-constrained platforms. Due to the lightweight design, we achieved a classification in under 100,$mu$s with a training time of 2.61 seconds. We also showed the ability to adapt the system to incremental changes during operation. Since cost effectiveness is of utmost importance in the automotive industry due to high production volumes, the achieved improvements are significant and necessary to realize sender identification.

View More Papers

ABSynthe: Automatic Blackbox Side-channel Synthesis on Commodity Microarchitectures

Ben Gras (Vrije Universiteit Amsterdam, Intel Corporation), Cristiano Giuffrida (Vrije Universiteit Amsterdam), Michael Kurth (Vrije Universiteit Amsterdam), Herbert Bos (Vrije Universiteit Amsterdam), Kaveh Razavi (Vrije Universiteit Amsterdam)

Read More

BLAZE: Blazing Fast Privacy-Preserving Machine Learning

Arpita Patra (Indian Institute of Science, Bangalore), Ajith Suresh (Indian Institute of Science, Bangalore)

Read More

MassBrowser: Unblocking the Censored Web for the Masses, by...

Milad Nasr (University of Massachusetts Amherst), Hadi Zolfaghari (University of Massachusetts Amherst), Amir Houmansadr (University of Massachusetts Amherst), Amirhossein Ghafari (University of Massachusetts Amherst)

Read More

A Practical Approach for Taking Down Avalanche Botnets Under...

Victor Le Pochat (imec-DistriNet, KU Leuven), Tim Van hamme (imec-DistriNet, KU Leuven), Sourena Maroofi (Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG), Tom Van Goethem (imec-DistriNet, KU Leuven), Davy Preuveneers (imec-DistriNet, KU Leuven), Andrzej Duda (Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG), Wouter Joosen (imec-DistriNet, KU Leuven), Maciej Korczyński (Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG)

Read More