Chanyoung Park (UNIST), Hyungon Moon (UNIST)

Defeating use-after-free exploits presents a challenging problem, one for which a universal solution remains elusive. Recent efforts towards efficient prevention of use-after-free exploits have found that delaying the reuse of freed memory can both be effective and efficient in many cases. Previous studies have proposed two primary approaches: one where reuse is postponed until the allocator can confidently ascertain the absence of any dangling pointers to the freed memory, and another that refrains from reusing a freed heap chunk until the program's termination. We make an intriguing observation from our in-depth analysis of these two approaches and their reported performance impacts. When compared to the design that delays the reuse until the program terminates the strategy that delays the reuse just until no dangling pointer references the freed chunk suffers from a significant performance overhead for some workloads. The change in the reuse of each heap chunk affects the distribution of allocated chunks in the heap, and the performance of some benchmarks. This study proposes HushVac, an allocator that performs delayed reuse in such a way that the distribution of heap chunks becomes more friendly to such workloads. An evaluation of HushVac showed that the average performance overhead of HushVac (4.7%) was lower than that of the state-of-the-art (11.4%) when running the SPEC CPU 2006 benchmark suite. Specifically, the overhead of HushVac on the distribution-sensitive benchmark was about 35.2% while the prior work has an overhead of 110%.

View More Papers

Strengthening Privacy in Robust Federated Learning through Secure Aggregation

Tianyue Chu, Devriş İşler (IMDEA Networks Institute & Universidad Carlos III de Madrid), Nikolaos Laoutaris (IMDEA Networks Institute)

Read More

AnonPSI: An Anonymity Assessment Framework for PSI

Bo Jiang (TikTok Inc.), Jian Du (TikTok Inc.), Qiang Yan (TikTok Inc.)

Read More

FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning Attacks...

Hossein Fereidooni (Technical University of Darmstadt), Alessandro Pegoraro (Technical University of Darmstadt), Phillip Rieger (Technical University of Darmstadt), Alexandra Dmitrienko (University of Wuerzburg), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

Vision: “AccessFormer”: Feedback-Driven Access Control Policy

Sakuna Harinda Jayasundara, Nalin Asanka Gamagedara Arachchilage, Giovanni Russello (University of Auckland)

Read More