Chanyoung Park (UNIST), Hyungon Moon (UNIST)

Defeating use-after-free exploits presents a challenging problem, one for which a universal solution remains elusive. Recent efforts towards efficient prevention of use-after-free exploits have found that delaying the reuse of freed memory can both be effective and efficient in many cases. Previous studies have proposed two primary approaches: one where reuse is postponed until the allocator can confidently ascertain the absence of any dangling pointers to the freed memory, and another that refrains from reusing a freed heap chunk until the program's termination. We make an intriguing observation from our in-depth analysis of these two approaches and their reported performance impacts. When compared to the design that delays the reuse until the program terminates the strategy that delays the reuse just until no dangling pointer references the freed chunk suffers from a significant performance overhead for some workloads. The change in the reuse of each heap chunk affects the distribution of allocated chunks in the heap, and the performance of some benchmarks. This study proposes HushVac, an allocator that performs delayed reuse in such a way that the distribution of heap chunks becomes more friendly to such workloads. An evaluation of HushVac showed that the average performance overhead of HushVac (4.7%) was lower than that of the state-of-the-art (11.4%) when running the SPEC CPU 2006 benchmark suite. Specifically, the overhead of HushVac on the distribution-sensitive benchmark was about 35.2% while the prior work has an overhead of 110%.

View More Papers

On the Security of Satellite-Based Air Traffic Control

Tobias Lüscher (ETH Zurich), Martin Strohmeier (Cyber-Defence Campus, armasuisse S+T), Vincent Lenders (Cyber-Defence Campus, armasuisse S+T)

Read More

SigmaDiff: Semantics-Aware Deep Graph Matching for Pseudocode Diffing

Lian Gao (University of California Riverside), Yu Qu (University of California Riverside), Sheng Yu (University of California, Riverside & Deepbits Technology Inc.), Yue Duan (Singapore Management University), Heng Yin (University of California, Riverside & Deepbits Technology Inc.)

Read More

CrowdGuard: Federated Backdoor Detection in Federated Learning

Phillip Rieger (Technical University of Darmstadt), Torsten Krauß (University of Würzburg), Markus Miettinen (Technical University of Darmstadt), Alexandra Dmitrienko (University of Würzburg), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

SENSE: Enhancing Microarchitectural Awareness for TEEs via Subscription-Based Notification

Fan Sang (Georgia Institute of Technology), Jaehyuk Lee (Georgia Institute of Technology), Xiaokuan Zhang (George Mason University), Meng Xu (University of Waterloo), Scott Constable (Intel), Yuan Xiao (Intel), Michael Steiner (Intel), Mona Vij (Intel), Taesoo Kim (Georgia Institute of Technology)

Read More