Eman Maali (Imperial College London), Omar Alrawi (Georgia Institute of Technology), Julie McCann (Imperial College London)

With the proliferation of IoT devices, network device identification is essential for effective network management and security. Many exhibit performance degradation despite the potential of machine learning-based IoT device identification solutions. Degradation arises from the assumption of static IoT environments that do not account for the diversity of real-world IoT networks, as devices operate in various modes and evolve over time. In this paper, we evaluate current IoT device identification solutions using curated datasets and representative features across different settings. We consider key factors that affect real-world device identification, including modes of operation, spatio-temporal variations, and traffic sampling, and organise them into a set of attributes by which we can evaluate current solutions. We then use machine learning explainability techniques to pinpoint the key causes of performance degradation. This evaluation uncovers empirical evidence of what continuously identifies devices, provides valuable insights, and practical recommendations for network operators to improve their IoT device identification in operational deployments.

View More Papers

Detecting IMSI-Catchers by Characterizing Identity Exposing Messages in Cellular...

Tyler Tucker (University of Florida), Nathaniel Bennett (University of Florida), Martin Kotuliak (ETH Zurich), Simon Erni (ETH Zurich), Srdjan Capkun (ETH Zuerich), Kevin Butler (University of Florida), Patrick Traynor (University of Florida)

Read More

Logical Maneuvers: Detecting and Mitigating Adversarial Hardware Faults in...

Fatemeh Khojasteh Dana, Saleh Khalaj Monfared, Shahin Tajik (Worcester Polytechnic Institute)

Read More

SCAMMAGNIFIER: Piercing the Veil of Fraudulent Shopping Website Campaigns

Marzieh Bitaab (Arizona State University), Alireza Karimi (Arizona State University), Zhuoer Lyu (Arizona State University), Adam Oest (Amazon), Dhruv Kuchhal (Amazon), Muhammad Saad (X Corp.), Gail-Joon Ahn (Arizona State University), Ruoyu Wang (Arizona State University), Tiffany Bao (Arizona State University), Yan Shoshitaishvili (Arizona State University), Adam Doupé (Arizona State University)

Read More

Revisiting Concept Drift in Windows Malware Detection: Adaptation to...

Adrian Shuai Li (Purdue University), Arun Iyengar (Intelligent Data Management and Analytics, LLC), Ashish Kundu (Cisco Research), Elisa Bertino (Purdue University)

Read More