Florian Kerschbaum (University of Waterloo), Erik-Oliver Blass (Airbus), Rasoul Akhavan Mahdavi (University of Waterloo)

In a Private section intersection (PSI) protocol, Alice and Bob compute the intersection of their respective sets without disclosing any element not in the intersection. PSI protocols have been extensively studied in the literature and are deployed in industry. With state-of-the-art protocols achieving optimal asymptotic complexity, performance improvements are rare and can only improve complexity constants. In this paper, we present a new private, extremely efficient comparison protocol that leads to a PSI protocol with low constants. A useful property of our comparison protocol is that it can be divided into an online and an offline phase. All expensive cryptographic operations are performed during the offline phase, and the online phase performs only four fast field operations per comparison. This leads to an incredibly fast online phase, and our evaluation shows that it outperforms related work, including KKRT (CCS'16), VOLE-PSI (EuroCrypt'21), and OKVS (Crypto'21). We also evaluate standard approaches to implement the offline phase using different trust assumptions: cryptographic, hardware, and a third party ("dealer model").

View More Papers

Assessing the Impact of Interface Vulnerabilities in Compartmentalized Software

Hugo Lefeuvre (The University of Manchester), Vlad-Andrei Bădoiu (University Politehnica of Bucharest), Yi Chen (Rice University), Felipe Huici (Unikraft.io), Nathan Dautenhahn (Rice University), Pierre Olivier (The University of Manchester)

Read More

ProbFlow : Using Probabilistic Programming in Anonymous Communication Networks

Hussein Darir (University of Illinois Urbana-Champaign), Geir Dullerud (University of Illinois Urbana-Champaign), Nikita Borisov (University of Illinois Urbana-Champaign)

Read More

BEAGLE: Forensics of Deep Learning Backdoor Attack for Better...

Siyuan Cheng (Purdue University), Guanhong Tao (Purdue University), Yingqi Liu (Purdue University), Shengwei An (Purdue University), Xiangzhe Xu (Purdue University), Shiwei Feng (Purdue University), Guangyu Shen (Purdue University), Kaiyuan Zhang (Purdue University), Qiuling Xu (Purdue University), Shiqing Ma (Rutgers University), Xiangyu Zhang (Purdue University)

Read More

PPA: Preference Profiling Attack Against Federated Learning

Chunyi Zhou (Nanjing University of Science and Technology), Yansong Gao (Nanjing University of Science and Technology), Anmin Fu (Nanjing University of Science and Technology), Kai Chen (Chinese Academy of Science), Zhiyang Dai (Nanjing University of Science and Technology), Zhi Zhang (CSIRO's Data61), Minhui Xue (CSIRO's Data61), Yuqing Zhang (University of Chinese Academy of Science)

Read More