Florian Kerschbaum (University of Waterloo), Erik-Oliver Blass (Airbus), Rasoul Akhavan Mahdavi (University of Waterloo)

In a Private section intersection (PSI) protocol, Alice and Bob compute the intersection of their respective sets without disclosing any element not in the intersection. PSI protocols have been extensively studied in the literature and are deployed in industry. With state-of-the-art protocols achieving optimal asymptotic complexity, performance improvements are rare and can only improve complexity constants. In this paper, we present a new private, extremely efficient comparison protocol that leads to a PSI protocol with low constants. A useful property of our comparison protocol is that it can be divided into an online and an offline phase. All expensive cryptographic operations are performed during the offline phase, and the online phase performs only four fast field operations per comparison. This leads to an incredibly fast online phase, and our evaluation shows that it outperforms related work, including KKRT (CCS'16), VOLE-PSI (EuroCrypt'21), and OKVS (Crypto'21). We also evaluate standard approaches to implement the offline phase using different trust assumptions: cryptographic, hardware, and a third party ("dealer model").

View More Papers

FCGAT: Interpretable Malware Classification Method using Function Call Graph...

Minami Someya (Institute of Information Security), Yuhei Otsubo (National Police Academy), Akira Otsuka (Institute of Information Security)

Read More

Navigating Murky Waters: Automated Browser Feature Testing for Uncovering...

Mir Masood Ali (University of Illinois Chicago), Binoy Chitale (Stony Brook University), Mohammad Ghasemisharif (University of Illinois Chicago), Chris Kanich (University of Illinois Chicago), Nick Nikiforakis (Stony Brook University), Jason Polakis (University of Illinois Chicago)

Read More

Detection and Resolution of Control Decision Anomalies

Prof. Kang Shin (Kevin and Nancy O'Connor Professor of Computer Science, and the Founding Director of the Real-Time Computing Laboratory (RTCL) in the Electrical Engineering and Computer Science Department at the University of Michigan)

Read More