Chendong Yu (Institute of Information Engineering, Chinese Academy of Sciences and School of Cyber Security, University of Chinese Academy of Sciences), Yang Xiao (Institute of Information Engineering, Chinese Academy of Sciences and School of Cyber Security, University of Chinese Academy of Sciences), Jie Lu (Institute of Computing Technology of the Chinese Academy of Sciences), Yuekang Li (University of New South Wales), Yeting Li (Institute of Information Engineering, Chinese Academy of Sciences and School of Cyber Security, University of Chinese Academy of Sciences), Lian Li (Institute of Computing Technology of the Chinese Academy of Sciences), Yifan Dong (Institute of Information Engineering, Chinese Academy of Sciences and School of Cyber Security, University of Chinese Academy of Sciences), Jian Wang (Institute of Information Engineering, Chinese Academy of Sciences and School of Cyber Security, University of Chinese Academy of Sciences), Jingyi Shi (Institute of Information Engineering, Chinese Academy of Sciences and School of Cyber Security, University of Chinese Academy of Sciences), Defang Bo (Institute of Information Engineering, Chinese Academy of Sciences and School of Cyber Security, University of Chinese Academy of Sciences), Wei Huo (Institute of Information Engineering, Chinese Academy of Sciences and School of Cyber Security, University of Chinese Academy of Sciences)

Files are a significant attack vector for security boundary violation, yet a systematic understanding of the vulnerabilities underlying these attacks is lacking. To bridge this gap, we present a comprehensive analysis of File Hijacking Vulnerabilities (FHVulns), a type of vulnerability that enables attackers to breach security boundaries through the manipulation of file content or file paths. We provide an in-depth empirical study on 268 well-documented FHVuln CVE records from January 2020 to October 2022. Our study reveals the origins and triggering mechanisms of FHVulns and highlights that existing detection techniques have overlooked the majority of FHVulns. As a result, we anticipate a significant prevalence of zero-day FHVulns in software. We developed a dynamic analysis tool, JERRY, which effectively detects FHVulns at runtime by simulating hijacking actions during program execution. We applied JERRY to 438 popular software programs from vendors including Microsoft, Google, Adobe, and Intel, and found 339 zero-day FHVulns. We reported all vulnerabilities identified by JERRY to the corresponding vendors, and as of now, 84 of them have been confirmed or fixed, with 51 CVE IDs granted and $83,400 bug bounties earned.

View More Papers

Exploiting Diagnostic Protocol Vulnerabilities on Embedded Networks in Commercial...

Carson Green, Rik Chatterjee, Jeremy Daily (Colorado State University)

Read More

Differentially Private Dataset Condensation

Tianhang Zheng (University of Missouri-Kansas City), Baochun Li (University of Toronto)

Read More

Exploring the Influence of Prompts in LLMs for Security-Related...

Weiheng Bai (University of Minnesota), Qiushi Wu (IBM Research), Kefu Wu, Kangjie Lu (University of Minnesota)

Read More

Leaking the Privacy of Groups and More: Understanding Privacy...

Jiangrong Wu (Sun Yat-sen University), Yuhong Nan (Sun Yat-sen University), Luyi Xing (Indiana University Bloomington), Jiatao Cheng (Sun Yat-sen University), Zimin Lin (Alibaba Group), Zibin Zheng (Sun Yat-sen University), Min Yang (Fudan University)

Read More