Jiangan Ji (Information Engineering University,Tsinghua University), Chao Zhang (Tsinghua University), Shuitao Gan (Labortory for Advanced Computing and Intelligence Engineering), Lin Jian (Information Engineering University), Hangtian Liu (Information Engineering University), Tieming Liu (Information Engineering University), Lei Zheng (Tsinghua university), Zhipeng Jia (Information Engineering University)

The rapid proliferation of IoT devices has introduced substantial security vulnerabilities. Existing vulnerability detection techniques exhibit various weaknesses: static analysis solutions (including large language models, LLMs) suffer from high false positives and provide no PoC (proof-of-concept) samples, while dynamic analysis solutions (e.g., fuzzing) often have high false negatives.
To address these challenges, we present FirmAgent, the first hybrid solution that leverages fuzzing to assist LLM agents in finding vulnerabilities in IoT firmware.
Our design is motivated by the key observation that fuzzing can accurately identify input-related code points in firmware, while static analysis can thoroughly analyze program paths starting from those code points.
FirmAgent utilizes fuzzing to collect runtime input points (i.e., taint sources) and reconstruct potential vulnerability paths. Then, it applies an LLM agent to perform context-aware taint analysis along the potential paths and another LLM agent to refine the fuzzing-generated testcase to generate PoC testcases.
We evaluate FirmAgent on 14 real-world IoT firmware. It identifies 182 vulnerabilities with a precision of 91%, including 140 previously unknown vulnerabilities, 17 of which have been assigned CVE numbers. Our results demonstrate that FirmAgent substantially outperforms SOTA tools in both detection capability and precision.

View More Papers

PortRush: Detect Write Port Contention Side-Channel Vulnerabilities via Hardware...

Peihong Lin (National University of Defense Technology), Pengfei Wang (National University of Defense Technology), Lei Zhou (National University of Defense Technology), Gen Zhang (National University of Defense Technology), Xu Zhou (National University of Defense Technology), Wei Xie (National University of Defense Technology), Zhiyuan Jiang (National University of Defense Technology), Kai Lu (National University of Defense…

Read More

Dataset Reduction and Watermark Removal via Self-supervised Learning for...

Hao Luan (Fudan University), Xue Tan (Fudan University), Zhiheng Li (Shandong University), Jun Dai (Worcester Polytechnic Institute), Xiaoyan Sun (Worcester Polytechnic Institute), Ping Chen (Fudan University)

Read More

Achieving Interpretable DL-based Web Attack Detection through Malicious Payload...

Peiyang Li (Tsinghua University & Ant Group), Fukun Mei (Tsinghua University), Ye Wang (Tsinghua University), Zhuotao Liu (Tsinghua University), Ke Xu (Tsinghua University & Zhongguancun Laboratory), Chao Shen (Xi'an Jiaotong University), Qian Wang (Wuhan University), Qi Li (Tsinghua University & Zhongguancun Laboratory)

Read More