Thijs van Ede (University of Twente), Riccardo Bortolameotti (Bitdefender), Andrea Continella (UC Santa Barbara), Jingjing Ren (Northeastern University), Daniel J. Dubois (Northeastern University), Martina Lindorfer (TU Wien), David Choffnes (Northeastern University), Maarten van Steen (University of Twente), Andreas Peter (University of Twente)

Mobile-application fingerprinting of network traffic is a valuable tool for many security solutions as it provides insights into the apps active on a network.
Unfortunately, existing techniques require prior knowledge of apps to be able to recognize them.
However, mobile environments are constantly evolving, i.e., apps are regularly installed, updated, and uninstalled.
Therefore, it is infeasible for existing fingerprinting approaches to cover all apps that may appear on a network.
Moreover, most mobile traffic is encrypted, shows similarities with other apps, e.g., due to common libraries or the use of content delivery networks, and depends on user input, further complicating the fingerprinting process.

As a solution, we propose FlowPrint, an unsupervised approach for creating mobile app fingerprints from (encrypted) network traffic.
We automatically find temporal correlations among destination-related features of network traffic and use these correlations to generate app fingerprints.
As this approach is unsupervised, we are able to fingerprint previously unseen apps, something that existing techniques fail to achieve.
We evaluate our approach for both Android and iOS in the setting of app recognition where we achieve an accuracy of 89.2%, outperforming state-of-the-art solutions by 39.0%.
In addition, we show that our approach can detect previously unseen apps with a precision of 93.5%, detecting 72.3% of apps within the first five minutes of communication.

View More Papers

Packet-Level Signatures for Smart Home Devices

Rahmadi Trimananda (University of California, Irvine), Janus Varmarken (University of California, Irvine), Athina Markopoulou (University of California, Irvine), Brian Demsky (University of California, Irvine)

Read More

Are You Going to Answer That? Measuring User Responses...

Imani N. Sherman (University of Florida), Jasmine D. Bowers (University of Florida), Keith McNamara Jr. (University of Florida), Juan E. Gilbert (University of Florida), Jaime Ruiz (University of Florida), Patrick Traynor (University of Florida)

Read More

SPEECHMINER: A Framework for Investigating and Measuring Speculative Execution...

Yuan Xiao (The Ohio State University), Yinqian Zhang (The Ohio State University), Radu Teodorescu (The Ohio State University)

Read More

Unicorn: Runtime Provenance-Based Detector for Advanced Persistent Threats

Xueyuan Han (Harvard University), Thomas Pasquier (University of Bristol), Adam Bates (University of Illinois at Urbana-Champaign), James Mickens (Harvard University), Margo Seltzer (University of British Columbia)

Read More