Jianting Zhang (Purdue University), Wuhui Chen (Sun Yat-sen University), Sifu Luo (Sun Yat-sen University), Tiantian Gong (Purdue University), Zicong Hong (The Hong Kong Polytechnic University), Aniket Kate (Purdue University)

Sharding is a prominent technique for scaling blockchains. By dividing the network into smaller components known as shards, a sharded blockchain can process transactions in parallel without introducing inconsistencies through the coordination of intra-shard and cross-shard consensus protocols. However, we observe a critical security issue with sharded systems: transaction ordering manipulations can occur when coordinating intra-shard and cross-shard consensus protocols, leaving the system vulnerable to attack. Specifically, we identify a novel security issue known as finalization fairness, which can be exploited through a front-running attack. This attack allows an attacker to manipulate the execution order of transactions, even if the victim's transaction has already been processed and added to the blockchain by a fair intra-shard consensus.

To address the issue, we offer Haechi, a novel cross-shard protocol that is immune to front-running attacks. Haechi introduces an ordering phase between transaction processing and execution, ensuring that the execution order of transactions is the same as the processing order and achieving finalization fairness. To accommodate different consensus speeds among shards, Haechi incorporates a finalization fairness algorithm to achieve a globally fair order with minimal performance loss. By providing a global order, Haechi ensures strong consistency among shards, enabling better parallelism in handling conflicting transactions across shards. These features make Haechi a promising solution for supporting popular smart contracts in the real world. To evaluate Haechi's performance and effectiveness in preventing the attack, we implemented the protocol using Tendermint and conducted extensive experiments on a geo-distributed AWS environment. Our results demonstrate that Haechi can effectively prevent the presented front-running attack with little performance sacrifice compared to existing cross-shard consensus protocols.

View More Papers

Inaudible Adversarial Perturbation: Manipulating the Recognition of User Speech...

Xinfeng Li (Zhejiang University), Chen Yan (Zhejiang University), Xuancun Lu (Zhejiang University), Zihan Zeng (Zhejiang University), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejiang University)

Read More

Reverse Engineering of Multiplexed CAN Frames (Long)

Alessio Buscemi, Thomas Engel (SnT, University of Luxembourg), Kang G. Shin (The University of Michigan)

Read More

A Duty to Forget, a Right to be Assured?...

Hongsheng Hu (CSIRO's Data61), Shuo Wang (CSIRO's Data61), Jiamin Chang (University of New South Wales), Haonan Zhong (University of New South Wales), Ruoxi Sun (CSIRO's Data61), Shuang Hao (University of Texas at Dallas), Haojin Zhu (Shanghai Jiao Tong University), Minhui Xue (CSIRO's Data61)

Read More

Detecting Voice Cloning Attacks via Timbre Watermarking

Chang Liu (University of Science and Technology of China), Jie Zhang (Nanyang Technological University), Tianwei Zhang (Nanyang Technological University), Xi Yang (University of Science and Technology of China), Weiming Zhang (University of Science and Technology of China), NengHai Yu (University of Science and Technology of China)

Read More