Christian Niesler (University of Duisburg-Essen), Sebastian Surminski (University of Duisburg-Essen), Lucas Davi (University of Duisburg-Essen)

Memory corruption attacks are a pre-dominant attack vector against IoT devices. Simply updating vulnerable IoT software is not always possible due to unacceptable downtime and a required reboot. These side-effects must be avoided for highly-available embedded systems such as medical devices and, generally speaking, for any embedded system with real-time constraints.
To avoid downtime and reboot of a system, previous research has introduced the concept of hotpatching. However, the existing approaches cannot be applied to resource-constrained IoT devices. Furthermore, possible hardware-related issues have not been addressed, i.e., the inability to directly modify the firmware image due to read-only memory.

In this paper, we present the design and implementation of HERA (Hotpatching of Embedded Real-time Applications) which utilizes hardware-based built-in features of commodity Cortex-M microcontrollers to perform hotpatching of embedded systems. HERA preserves hard real-time constraints while keeping the additional resource usage to a minimum. In a case study, we apply HERA to two vulnerable medical devices. Furthermore, we leverage HERA to patch an existing vulnerability in the FreeRTOS operating system. These applications demonstrate the high practicality and efficiency of our approach.

View More Papers

Differentially Private Health Tokens for Estimating COVID-19 Risk

David Butler, Chris Hicks, James Bell, Carsten Maple, and Jon Crowcroft (The Alan Turing Institute)

Read More

EarArray: Defending against DolphinAttack via Acoustic Attenuation

Guoming Zhang (Zhejiang University), Xiaoyu Ji (Zhejiang University), Xinfeng Li (Zhejiang University), Gang Qu (University of Maryland), Wenyuan Xu (Zhejing University)

Read More

WATSON: Abstracting Behaviors from Audit Logs via Aggregation of...

Jun Zeng (National University of Singapore), Zheng Leong Chua (Independent Researcher), Yinfang Chen (National University of Singapore), Kaihang Ji (National University of Singapore), Zhenkai Liang (National University of Singapore), Jian Mao (Beihang University)

Read More

Demo #1: Curricular Reinforcement Learning for Robust Policy in...

Yunzhe Tian, Yike Li, Yingxiao Xiang, Wenjia Niu, Endong Tong, and Jiqiang Liu (Beijing Jiaotong University)

Read More