Theodor Schnitzler (Research Center Trustworthy Data Science and Security, TU Dortmund, and Ruhr-Universität Bochum), Katharina Kohls (Radboud University), Evangelos Bitsikas (Northeastern University and New York University Abu Dhabi), Christina Pöpper (New York University Abu Dhabi)

Mobile instant messengers such as WhatsApp use delivery status notifications in order to inform users if a sent message has successfully reached its destination. This is useful and important information for the sender due to the often asynchronous use of the messenger service. However, as we demonstrate in this paper, this standard feature opens up a timing side channel with unexpected consequences for user location privacy. We investigate this threat conceptually and experimentally for three widely spread instant messengers. We validate that this information leak even exists in privacy-friendly messengers such as Signal and Threema.

Our results show that, after a training phase, a messenger user can distinguish different locations of the message receiver. Our analyses involving multiple rounds of measurements and evaluations show that the timing side channel persists independent of distances between receiver locations -- the attack works both for receivers in different countries as well as at small scale in one city. For instance, out of three locations within the same city, the sender can determine the correct one with more than 80% accuracy. Thus, messenger users can secretly spy on each others' whereabouts when sending instant messages. As our countermeasure evaluation shows, messenger providers could effectively disable the timing side channel by randomly delaying delivery confirmations within the range of a few seconds. For users themselves, the threat is harder to prevent since there is no option to turn off delivery confirmations.

View More Papers

Un-Rocking Drones: Foundations of Acoustic Injection Attacks and Recovery...

Jinseob Jeong (KAIST, Agency for Defense Development), Dongkwan Kim (Samsung SDS), Joonha Jang (KAIST), Juhwan Noh (KAIST), Changhun Song (KAIST), Yongdae Kim (KAIST)

Read More

FCGAT: Interpretable Malware Classification Method using Function Call Graph...

Minami Someya (Institute of Information Security), Yuhei Otsubo (National Police Academy), Akira Otsuka (Institute of Information Security)

Read More

VulHawk: Cross-architecture Vulnerability Detection with Entropy-based Binary Code Search

Zhenhao Luo (College of Computer, National University of Defense Technology), Pengfei Wang (College of Computer, National University of Defense Technology), Baosheng Wang (College of Computer, National University of Defense Technology), Yong Tang (College of Computer, National University of Defense Technology), Wei Xie (College of Computer, National University of Defense Technology), Xu Zhou (College of Computer,…

Read More

ProbFlow : Using Probabilistic Programming in Anonymous Communication Networks

Hussein Darir (University of Illinois Urbana-Champaign), Geir Dullerud (University of Illinois Urbana-Champaign), Nikita Borisov (University of Illinois Urbana-Champaign)

Read More