Zhongming Wang (Chongqing University), Tao Xiang (Chongqing University), Xiaoguo Li (Chongqing University), Biwen Chen (Chongqing University), Guomin Yang (Singapore Management University), Chuan Ma (Chongqing University), Robert H. Deng (Singapore Management University)

Encrypted messaging systems obstruct content moderation, although they provide end-to-end security. As a result, misinformation proliferates in these systems, thereby exacerbating online hate and harassment. The paradigm of ``Reporting-then-Tracing" shows great potential in mitigating the spread of misinformation. For instance, textit{message traceback} (CCS'19) traces all the dissemination paths of a message, while textit{source tracing} (CCS'21) traces its originator.
However, message traceback lacks privacy preservation for non-influential users (e.g., users who only receive the message once), while source tracing maintains privacy but only provides limited traceability.

In this paper, we initiate the study of textit{impact tracing}. Intuitively, impact tracing traces influential spreaders central to disseminating misinformation while providing privacy protection for non-influential users. We introduce noises to hide non-influential users and demonstrate that these noises do not hinder the identification of influential spreaders. Then, we formally prove our scheme's security and show it achieves differential privacy protection for non-influential users.
Additionally, we define three metrics to evaluate its traceability, correctness, and privacy using real-world datasets. The experimental results show that our scheme identifies the most influential spreaders with accuracy from 82% to 99% as the amount of noise varies. Meanwhile, our scheme requires only a 6-byte platform storage overhead for each message while maintaining a low messaging latency ($<$ 0.25ms).

View More Papers

VoiceRadar: Voice Deepfake Detection using Micro-Frequency and Compositional Analysis

Kavita Kumari (Technical University of Darmstadt), Maryam Abbasihafshejani (University of Texas at San Antonio), Alessandro Pegoraro (Technical University of Darmstadt), Phillip Rieger (Technical University of Darmstadt), Kamyar Arshi (Technical University of Darmstadt), Murtuza Jadliwala (University of Texas at San Antonio), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

How Different Tokenization Algorithms Impact LLMs and Transformer Models...

Ahmed Mostafa, Raisul Arefin Nahid, Samuel Mulder (Auburn University)

Read More

TWINFUZZ: Differential Testing of Video Hardware Acceleration Stacks

Matteo Leonelli (CISPA Helmholtz Center for Information Security), Addison Crump (CISPA Helmholtz Center for Information Security), Meng Wang (CISPA Helmholtz Center for Information Security), Florian Bauckholt (CISPA Helmholtz Center for Information Security), Keno Hassler (CISPA Helmholtz Center for Information Security), Ali Abbasi (CISPA Helmholtz Center for Information Security), Thorsten Holz (CISPA Helmholtz Center for Information…

Read More

Towards Better CFG Layouts

Jack Royer (CentraleSupélec), Frédéric TRONEL (CentraleSupélec, Inria, CNRS, University of Rennes), Yaëlle Vinçont (Univ Rennes, Inria, CNRS, IRISA)

Read More