Mahdi Rahimi (KU Leuven), Piyush Kumar Sharma (University of Michigan), Claudia Diaz (KU Leuven)

Mixnets are a type of anonymous communication system designed to provide network privacy to users. They route client messages through multiple hops, with each hop (mix)
perturbing the traffic patterns, thus making message tracing difficult for a network adversary. However, privacy in mixnets comes at the cost of increased latency, limiting the applications
that are usable when accessed through a mixnet. In this work we present LAMP, a set of routing approaches tailored for minimizing the propagation latency in mixnets with minimal
impact on anonymity. The design of these approaches is grounded in practical deployment considerations making them lightweight, easy to integrate with existing deployed mixnets and computationally realistic. We evaluate the proposed approaches using latency data from the deployed Nym mixnet and demonstrate that LAMP can reduce latency by a factor of 7.5 (from 153.4ms to 20ms) while maintaining high anonymity. LAMP even outperforms the
state-of-the-art system LARMix, providing 3× better latency-anonymity tradeoffs and significantly reducing the computational overhead by ≈ 13900× in comparison to LARMix.

View More Papers

The Forking Way: When TEEs Meet Consensus

Annika Wilde (Ruhr University Bochum), Tim Niklas Gruel (Ruhr University Bochum), Claudio Soriente (NEC Laboratories Europe), Ghassan Karame (Ruhr University Bochum)

Read More

Privacy Preserved Integrated Big Data Analytics Framework Using Federated...

Sarah Kaleem (Prince Sultan University, PSU) Awais Ahmad (Imam Mohammad Ibn Saud Islamic University, IMSIU), Muhammad Babar (Prince Sultan University, PSU), Goutham Reddy Alavalapati (University of Illinois, Springfield)

Read More

BARBIE: Robust Backdoor Detection Based on Latent Separability

Hanlei Zhang (Zhejiang University), Yijie Bai (Zhejiang University), Yanjiao Chen (Zhejiang University), Zhongming Ma (Zhejiang University), Wenyuan Xu (Zhejiang University)

Read More