Mahdi Rahimi (KU Leuven), Piyush Kumar Sharma (University of Michigan), Claudia Diaz (KU Leuven)

Mixnets are a type of anonymous communication system designed to provide network privacy to users. They route client messages through multiple hops, with each hop (mix)
perturbing the traffic patterns, thus making message tracing difficult for a network adversary. However, privacy in mixnets comes at the cost of increased latency, limiting the applications
that are usable when accessed through a mixnet. In this work we present LAMP, a set of routing approaches tailored for minimizing the propagation latency in mixnets with minimal
impact on anonymity. The design of these approaches is grounded in practical deployment considerations making them lightweight, easy to integrate with existing deployed mixnets and computationally realistic. We evaluate the proposed approaches using latency data from the deployed Nym mixnet and demonstrate that LAMP can reduce latency by a factor of 7.5 (from 153.4ms to 20ms) while maintaining high anonymity. LAMP even outperforms the
state-of-the-art system LARMix, providing 3× better latency-anonymity tradeoffs and significantly reducing the computational overhead by ≈ 13900× in comparison to LARMix.

View More Papers

Automatic Insecurity: Exploring Email Auto-configuration in the Wild

Shushang Wen (School of Cyber Science and Technology, University of Science and Technology of China), Yiming Zhang (Tsinghua University), Yuxiang Shen (School of Cyber Science and Technology, University of Science and Technology of China), Bingyu Li (School of Cyber Science and Technology, Beihang University), Haixin Duan (Tsinghua University; Zhongguancun Laboratory), Jingqiang Lin (School of Cyber…

Read More

A Field Study to Uncover and a Tool to...

Leon Kersten (Eindhoven University of Technology), Kim Beelen (Eindhoven University of Technology), Emmanuele Zambon (Eindhoven University of Technology), Chris Snijders (Eindhoven University of Technology), Luca Allodi (Eindhoven University of Technology)

Read More

Understanding reCAPTCHAv2 via a Large-Scale Live User Study

Andrew Searles (University of California Irvine), Renascence Tarafder Prapty (University of California Irvine), Gene Tsudik (University of California Irvine)

Read More

DRAGON: Predicting Decompiled Variable Data Types with Learned Confidence...

Caleb Stewart, Rhonda Gaede, Jeffrey Kulick (University of Alabama in Huntsville)

Read More