Qi Pang (Carnegie Mellon University), Yuanyuan Yuan (HKUST), Shuai Wang (HKUST)

Secure multi-party computation (MPC) has recently become prominent as a concept to enable multiple parties to perform privacy-preserving machine learning without leaking sensitive data or details of pre-trained models to the other parties. Industry and the community have been actively developing and promoting high-quality MPC frameworks (e.g., based on TensorFlow and PyTorch) to enable the usage of MPC-hardened models, greatly easing the development cycle of integrating deep learning models with MPC primitives.

Despite the prosperous development and adoption of MPC frameworks, a principled and systematic understanding toward the correctness of those MPC frameworks does not yet exist. To fill this critical gap, this paper introduces MPCDiff, a differential testing framework to effectively uncover inputs that cause deviant outputs of MPC-hardened models and their plaintext versions. We further develop techniques to localize error-causing computation units in MPC-hardened models and automatically repair those defects.

We evaluate MPCDiff using real-world popular MPC frameworks for deep learning developed by Meta (Facebook), Alibaba Group, Cape Privacy, and OpenMined. MPCDiff successfully detected over one thousand inputs that result in largely deviant outputs. These deviation-triggering inputs are (visually) meaningful in comparison to regular inputs, indicating that our findings may cause great confusion in the daily usage of MPC frameworks. After localizing and repairing error-causing computation units, the robustness of MPC-hardened models can be notably enhanced without sacrificing accuracy and with negligible overhead.

View More Papers

Designing and Evaluating a Testbed for the Matter Protocol:...

Ravindra Mangar (Dartmouth College) Jingyu Qian (University of Illinois), Wondimu Zegeye (Morgan State University), Abdulrahman AlRabah, Ben Civjan, Shalni Sundram, Sam Yuan, Carl A. Gunter (University of Illinois), Mounib Khanafer (American University of Kuwait), Kevin Kornegay (Morgan State University), Timothy J. Pierson, David Kotz (Dartmouth College)

Read More

AutoWatch: Learning Driver Behavior with Graphs for Auto Theft...

Paul Agbaje, Abraham Mookhoek, Afia Anjum, Arkajyoti Mitra (University of Texas at Arlington), Mert D. Pesé (Clemson University), Habeeb Olufowobi (University of Texas at Arlington)

Read More

Securing the Satellite Software Stack

Samuel Jero (MIT Lincoln Laboratory), Juliana Furgala (MIT Lincoln Laboratory), Max A Heller (MIT Lincoln Laboratory), Benjamin Nahill (MIT Lincoln Laboratory), Samuel Mergendahl (MIT Lincoln Laboratory), Richard Skowyra (MIT Lincoln Laboratory)

Read More