Qi Pang (Carnegie Mellon University), Yuanyuan Yuan (HKUST), Shuai Wang (HKUST)

Secure multi-party computation (MPC) has recently become prominent as a concept to enable multiple parties to perform privacy-preserving machine learning without leaking sensitive data or details of pre-trained models to the other parties. Industry and the community have been actively developing and promoting high-quality MPC frameworks (e.g., based on TensorFlow and PyTorch) to enable the usage of MPC-hardened models, greatly easing the development cycle of integrating deep learning models with MPC primitives.

Despite the prosperous development and adoption of MPC frameworks, a principled and systematic understanding toward the correctness of those MPC frameworks does not yet exist. To fill this critical gap, this paper introduces MPCDiff, a differential testing framework to effectively uncover inputs that cause deviant outputs of MPC-hardened models and their plaintext versions. We further develop techniques to localize error-causing computation units in MPC-hardened models and automatically repair those defects.

We evaluate MPCDiff using real-world popular MPC frameworks for deep learning developed by Meta (Facebook), Alibaba Group, Cape Privacy, and OpenMined. MPCDiff successfully detected over one thousand inputs that result in largely deviant outputs. These deviation-triggering inputs are (visually) meaningful in comparison to regular inputs, indicating that our findings may cause great confusion in the daily usage of MPC frameworks. After localizing and repairing error-causing computation units, the robustness of MPC-hardened models can be notably enhanced without sacrificing accuracy and with negligible overhead.

View More Papers

ReqsMiner: Automated Discovery of CDN Forwarding Request Inconsistencies and...

Linkai Zheng (Tsinghua University), Xiang Li (Tsinghua University), Chuhan Wang (Tsinghua University), Run Guo (Tsinghua University), Haixin Duan (Tsinghua University; Quancheng Laboratory), Jianjun Chen (Tsinghua University; Zhongguancun Laboratory), Chao Zhang (Tsinghua University; Zhongguancun Laboratory), Kaiwen Shen (Tsinghua University)

Read More

Security-Performance Tradeoff in DAG-based Proof-of-Work Blockchain Protocols

Shichen Wu (1. School of Cyber Science and Technology, Shandong University 2. Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education), Puwen Wei (1. School of Cyber Science and Technology, Shandong University 2. Quancheng Laboratory 3. Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education), Ren Zhang (Cryptape Co. Ltd. and…

Read More

K-LEAK: Towards Automating the Generation of Multi-Step Infoleak Exploits...

Zhengchuan Liang (UC Riverside), Xiaochen Zou (UC Riverside), Chengyu Song (UC Riverside), Zhiyun Qian (UC Riverside)

Read More

EM Eye: Characterizing Electromagnetic Side-channel Eavesdropping on Embedded Cameras

Yan Long (University of Michigan), Qinhong Jiang (Zhejiang University), Chen Yan (Zhejiang University), Tobias Alam (University of Michigan), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejiang University), Kevin Fu (Northeastern University)

Read More