Shaofei Li (Key Laboratory of High-Confidence Software Technologies (MOE), School of Computer Science, Peking University), Feng Dong (Huazhong University of Science and Technology), Xusheng Xiao (Arizona State University), Haoyu Wang (Huazhong University of Science and Technology), Fei Shao (Case Western Reserve University), Jiedong Chen (Sangfor Technologies Inc.), Yao Guo (Key Laboratory of High-Confidence Software Technologies (MOE), School of Computer Science, Peking University), Xiangqun Chen (Key Laboratory of High-Confidence Software Technologies (MOE), School of Computer Science, Peking University), Ding Li (Key Laboratory of High-Confidence Software Technologies (MOE), School of Computer Science, Peking University)

Advanced Persistent Threats (APT) attacks have plagued modern enterprises, causing significant financial losses. To counter these attacks, researchers propose techniques that capture the complex and stealthy scenarios of APT attacks by using provenance graphs to model system entities and their dependencies. Particularly, to accelerate attack detection and reduce financial losses, online provenance-based detection systems that detect and investigate APT attacks under the constraints of timeliness and limited resources are in dire need. Unfortunately, existing online systems usually sacrifice detection granularity to reduce computational complexity and produce provenance graphs with more than 100,000 nodes, posing challenges for security admins to interpret the detection results. In this paper, we design and implement NodLink, the first online detection system that maintains high detection accuracy without sacrificing detection granularity. Our insight is that the APT attack detection process in online provenance-based detection systems can be modeled as a Steiner Tree Problem (STP), which has efficient online approximation algorithms that recover concise attack-related provenance graphs with a theoretically bounded error. To utilize the frameworks of the STP approximation algorithm for APT attack detection, we propose a novel design of in-memory cache, an efficient attack screening method, and a new STP approximation algorithm that is more efficient than the conventional one in APT attack detection while maintaining the same complexity. We evaluate NodLink in a production environment. The open-world experiment shows that NodLink outperforms two state-of-the-art (SOTA) online provenance analysis systems by achieving magnitudes higher detection and investigation accuracy while having the same or higher throughput.

View More Papers

LDR: Secure and Efficient Linux Driver Runtime for Embedded...

Huaiyu Yan (Southeast University), Zhen Ling (Southeast University), Haobo Li (Southeast University), Lan Luo (Anhui University of Technology), Xinhui Shao (Southeast University), Kai Dong (Southeast University), Ping Jiang (Southeast University), Ming Yang (Southeast University), Junzhou Luo (Southeast University, Nanjing, P.R. China), Xinwen Fu (University of Massachusetts Lowell)

Read More

Why People Still Fall for Phishing Emails: An Empirical...

Asangi Jayatilaka (Centre for Research on Engineering Software Technologies (CREST), The University of Adelaide, School of Computing Technologies, RMIT University), Nalin Asanka Gamagedara Arachchilage (School of Computer Science, The University of Auckland), M. Ali Babar (Centre for Research on Engineering Software Technologies (CREST), The University of Adelaide)

Read More

Content Censorship in the InterPlanetary File System

Srivatsan Sridhar (Stanford University), Onur Ascigil (Lancaster University), Navin Keizer (University College London), François Genon (UCLouvain), Sébastien Pierre (UCLouvain), Yiannis Psaras (Protocol Labs), Etienne Riviere (UCLouvain), Michał Król (City, University of London)

Read More

Exploring Phishing Threats through QR Codes in Naturalistic Settings

Filipo Sharevski (DePaul University), Mattia Mossano, Maxime Fabian Veit, Gunther Schiefer, Melanie Volkamer (Karlsruhe Institute of Technology)

Read More