Shaofei Li (Key Laboratory of High-Confidence Software Technologies (MOE), School of Computer Science, Peking University), Feng Dong (Huazhong University of Science and Technology), Xusheng Xiao (Arizona State University), Haoyu Wang (Huazhong University of Science and Technology), Fei Shao (Case Western Reserve University), Jiedong Chen (Sangfor Technologies Inc.), Yao Guo (Key Laboratory of High-Confidence Software Technologies (MOE), School of Computer Science, Peking University), Xiangqun Chen (Key Laboratory of High-Confidence Software Technologies (MOE), School of Computer Science, Peking University), Ding Li (Key Laboratory of High-Confidence Software Technologies (MOE), School of Computer Science, Peking University)

Advanced Persistent Threats (APT) attacks have plagued modern enterprises, causing significant financial losses. To counter these attacks, researchers propose techniques that capture the complex and stealthy scenarios of APT attacks by using provenance graphs to model system entities and their dependencies. Particularly, to accelerate attack detection and reduce financial losses, online provenance-based detection systems that detect and investigate APT attacks under the constraints of timeliness and limited resources are in dire need. Unfortunately, existing online systems usually sacrifice detection granularity to reduce computational complexity and produce provenance graphs with more than 100,000 nodes, posing challenges for security admins to interpret the detection results. In this paper, we design and implement NodLink, the first online detection system that maintains high detection accuracy without sacrificing detection granularity. Our insight is that the APT attack detection process in online provenance-based detection systems can be modeled as a Steiner Tree Problem (STP), which has efficient online approximation algorithms that recover concise attack-related provenance graphs with a theoretically bounded error. To utilize the frameworks of the STP approximation algorithm for APT attack detection, we propose a novel design of in-memory cache, an efficient attack screening method, and a new STP approximation algorithm that is more efficient than the conventional one in APT attack detection while maintaining the same complexity. We evaluate NodLink in a production environment. The open-world experiment shows that NodLink outperforms two state-of-the-art (SOTA) online provenance analysis systems by achieving magnitudes higher detection and investigation accuracy while having the same or higher throughput.

View More Papers

Towards Precise Reporting of Cryptographic Misuses

Yikang Chen (The Chinese University of Hong Kong), Yibo Liu (Arizona State University), Ka Lok Wu (The Chinese University of Hong Kong), Duc V Le (Visa Research), Sze Yiu Chau (The Chinese University of Hong Kong)

Read More

A Comparative Analysis of Difficulty Between Log and Graph-Based...

Matt Jansen, Rakesh Bobba, Dave Nevin (Oregon State University)

Read More

SLMIA-SR: Speaker-Level Membership Inference Attacks against Speaker Recognition Systems

Guangke Chen (ShanghaiTech University), Yedi Zhang (National University of Singapore), Fu Song (Institute of Software, Chinese Academy of Sciences; University of Chinese Academy of Sciences)

Read More

Designing and Evaluating a Testbed for the Matter Protocol:...

Ravindra Mangar (Dartmouth College) Jingyu Qian (University of Illinois), Wondimu Zegeye (Morgan State University), Abdulrahman AlRabah, Ben Civjan, Shalni Sundram, Sam Yuan, Carl A. Gunter (University of Illinois), Mounib Khanafer (American University of Kuwait), Kevin Kornegay (Morgan State University), Timothy J. Pierson, David Kotz (Dartmouth College)

Read More