Tao Ni (City University of Hong Kong), Yuefeng Du (City University of Hong Kong), Qingchuan Zhao (City University of Hong Kong), Cong Wang (City University of Hong Kong)

Virtual Reality (VR) technologies are increasingly employed in numerous applications across various areas. Therefore, it is essential to ensure the security of interactions between users and VR devices. In this paper, we disclose a new side-channel leakage in the constellation tracking system of mainstream VR platforms, where the infrared (IR) signals emitted from the VR controllers for controller-headset interactions can be maliciously exploited to reconstruct unconstrained input keystrokes on the virtual keyboard non-intrusively. We propose a novel keystroke inference attack named VRecKey to demonstrate the feasibility and practicality of this novel infrared side channel. Specifically, VRecKey leverages a customized 2D IR sensor array to intercept ambient IR signals emitted from VR controllers and subsequently infers (i) character-level key presses on the virtual keyboard and (ii) word-level keystrokes along with their typing trajectories. We extensively evaluate the effectiveness of VRecKey with two commercial VR devices, and the results indicate that it can achieve over 94.2% and 90.5% top-3 accuracy in inferring character-level and word-level keystrokes with varying lengths, respectively. In addition, empirical results show that VRecKey is resilient to several practical impact factors and presents effectiveness in various real-world scenarios, which provides a complementary and orthogonal attack surface for the exploration of keystroke inference attacks in VR platforms.

View More Papers

Siniel: Distributed Privacy-Preserving zkSNARK

Yunbo Yang (The State Key Laboratory of Blockchain and Data Security, Zhejiang University), Yuejia Cheng (Shanghai DeCareer Consulting Co., Ltd), Kailun Wang (Beijing Jiaotong University), Xiaoguo Li (College of Computer Science, Chongqing University), Jianfei Sun (School of Computing and Information Systems, Singapore Management University), Jiachen Shen (Shanghai Key Laboratory of Trustworthy Computing, East China Normal…

Read More

MTZK: Testing and Exploring Bugs in Zero-Knowledge (ZK) Compilers

Dongwei Xiao (The Hong Kong University of Science and Technology), Zhibo Liu (The Hong Kong University of Science and Technology), Yiteng Peng (The Hong Kong University of Science and Technology), Shuai Wang (The Hong Kong University of Science and Technology)

Read More

DLBox: New Model Training Framework for Protecting Training Data

Jaewon Hur (Seoul National University), Juheon Yi (Nokia Bell Labs, Cambridge, UK), Cheolwoo Myung (Seoul National University), Sangyun Kim (Seoul National University), Youngki Lee (Seoul National University), Byoungyoung Lee (Seoul National University)

Read More

WIP: Towards Privacy Compliance by Design in the Matter...

Yichen Liu (Indiana University Bloomington), Jingwen Yan (Clemson University), Song Liao (Texas Tech University), Long Cheng (Clemson University), Luyi Xing (Indiana University Bloomington)

Read More