Sourav Das (University of Illinois at Urbana-Champaign), Zhuolun Xiang (Aptos), Ling Ren (University of Illinois at Urbana-Champaign)

The $q$-Strong Diffie-Hellman~($q$-SDH) parameters are foundational to efficient constructions of many cryptographic primitives such as zero-knowledge succinct non-interactive argument of knowledge, polynomial/vector commitments, verifiable secret sharing, and randomness beacon. The only existing method to generate these parameters securely is highly sequential, requires strong network synchrony assumptions, and has very high communication and computation cost. For example, to generate parameters for any given $q$, each party incurs a communication cost of $Omega(nq)$ and requires $Omega(n)$ rounds. Here $n$ is the number of parties in the secure multiparty computation protocol. Since $q$ is typically large, i.e., on the order of billions, the cost is highly prohibitive.

In this paper, we present a distributed protocol to generate $q$-SDH parameters in an asynchronous network. In a network of $n$ parties, our protocol tolerates up to one-third of malicious parties. Each party incurs a communication cost of $O(q + n^2log q)$ and the protocol finishes in $O(log q + log n)$ expected rounds. We provide a rigorous security analysis of our protocol. We implement our protocol and evaluate it with up to 128 geographically distributed parties. Our evaluation illustrates that our protocol is highly scalable and results in a 2-6$times$ better runtime and 4-13$times$ better per-party bandwidth usage compared to the state-of-the-art synchronous protocol for generating $q$-SDH parameters.

View More Papers

Information Based Heavy Hitters for Real-Time DNS Data Exfiltration...

Yarin Ozery (Ben-Gurion University of the Negev, Akamai Technologies inc.), Asaf Nadler (Ben-Gurion University of the Negev), Asaf Shabtai (Ben-Gurion University of the Negev)

Read More

BliMe: Verifiably Secure Outsourced Computation with Hardware-Enforced Taint Tracking

Hossam ElAtali (University of Waterloo), Lachlan J. Gunn (Aalto University), Hans Liljestrand (University of Waterloo), N. Asokan (University of Waterloo, Aalto University)

Read More

Benchmarking transferable adversarial attacks

Zhibo Jin (The University of Sydney), Jiayu Zhang (Suzhou Yierqi), Zhiyu Zhu, Huaming Chen (The University of Sydney)

Read More

AnonPSI: An Anonymity Assessment Framework for PSI

Bo Jiang (TikTok Inc.), Jian Du (TikTok Inc.), Qiang Yan (TikTok Inc.)

Read More