BeomSeok Oh (KAIST), Junho Ahn (KAIST), Sangwook Bae (KAIST), Mincheol Son (KAIST), Yonghwa Lee (KAIST), Min Suk Kang (KAIST), Yongdae Kim (KAIST)

SIM boxes have been playing a critical role in the underground ecosystem of international-scale frauds that steal billions of dollars from individual victims and mobile network operators across the globe. Many mitigation schemes have been proposed for these frauds, mainly aiming to detect fraud call sessions; however, one direct approach to this problem---the prevention of the SIM box devices from network use---has not drawn much attention despite its highly anticipated benefit. This is exactly what we aim to achieve in this paper. We propose a simple access control logic that detects when unauthorized SIM boxes use cellular networks for communication. At the heart of our defense proposal is the precise fingerprinting of device models (eg, distinguishing an iPhone 13 from any other smartphone models on the market) and device types (ie, smartphones and IoT devices) without relying on international mobile equipment identity, which can be spoofed easily. We empirically show that fingerprints, which were constructed from network-layer auxiliary information with more than 31K features, are mostly distinct among 85 smartphones and thus can be used to prevent the vast majority of illegal SIM boxes from making unauthorized voice calls. Our proposal, as the very first practical, reliable unauthorized cellular device model detection scheme, greatly simplifies the mitigation against SIM box frauds.

View More Papers

VASP: V2X Application Spoofing Platform

Mohammad Raashid Ansari, Jonathan Petit, Jean-Philippe Monteuuis, Cong Chen (Qualcomm Technologies, Inc.)

Read More

Learning Automated Defense Strategies Using Graph-Based Cyber Attack Simulations

Jakob Nyber, Pontus Johnson (KTH Royal Institute of Technology)

Read More

VICEROY: GDPR-/CCPA-compliant Enforcement of Verifiable Accountless Consumer Requests

Scott Jordan (University of California, Irvine), Yoshimichi Nakatsuka (University of California, Irvine), Ercan Ozturk (University of California, Irvine), Andrew Paverd (Microsoft Research), Gene Tsudik (University of California, Irvine)

Read More

BinaryInferno: A Semantic-Driven Approach to Field Inference for Binary...

Jared Chandler (Tufts University), Adam Wick (Fastly), Kathleen Fisher (DARPA)

Read More