Derui Wang (CSIRO's Data61), Minhui Xue (CSIRO's Data61), Bo Li (The University of Chicago), Seyit Camtepe (CSIRO's Data61), Liming Zhu (CSIRO's Data61)

The exploitation of publicly accessible data has led to escalating concerns regarding data privacy and intellectual property (IP) breaches in the age of artificial intelligence. To safeguard both data privacy and IP-related domain knowledge, efforts have been undertaken to render shared data unlearnable for unauthorized models in the wild. Existing methods apply empirically optimized perturbations to the data in the hope of disrupting the correlation between the inputs and the corresponding labels such that the data samples are converted into Unlearnable Examples (UEs). Nevertheless, the absence of mechanisms to verify the robustness of UEs against uncertainty in unauthorized models and their training procedures engenders several under-explored challenges. First, it is hard to quantify the unlearnability of UEs against unauthorized adversaries from different runs of training, leaving the soundness of the defense in obscurity. Particularly, as a prevailing evaluation metric, empirical test accuracy faces generalization errors and may not plausibly represent the quality of UEs. This also leaves room for attackers, as there is no rigid guarantee of the maximal test accuracy achievable by attackers. Furthermore, we find that a simple recovery attack can restore the clean-task performance of the classifiers trained on UEs by slightly perturbing the learned weights. To mitigate the aforementioned problems, in this paper, we propose a mechanism for certifying the so-called $(q, eta)$-Learnability of an unlearnable dataset via parametric smoothing. A lower certified $(q, eta)$-Learnability indicates a more robust and effective protection over the dataset. Concretely, we 1) improve the tightness of certified $(q, eta)$-Learnability and 2) design Provably Unlearnable Examples (PUEs) which have reduced $(q, eta)$-Learnability. According to experimental results, PUEs demonstrate both decreased certified $(q, eta)$-Learnability and enhanced empirical robustness compared to existing UEs. Compared to the competitors on classifiers with uncertainty in parameters, PUEs reduce at most $18.9%$ of certified $(q, eta)$-Learnability on ImageNet and $54.4%$ of the empirical test accuracy score on CIFAR-100. Our source code is available at https://github.com/NeuralSec/certified-data-learnability.

View More Papers

Ring of Gyges: Accountable Anonymous Broadcast via Secret-Shared Shuffle

Wentao Dong (City University of Hong Kong), Peipei Jiang (Wuhan University; City University of Hong Kong), Huayi Duan (ETH Zurich), Cong Wang (City University of Hong Kong), Lingchen Zhao (Wuhan University), Qian Wang (Wuhan University)

Read More

A Large-Scale Measurement Study of the PROXY Protocol and...

Stijn Pletinckx (University of California, Santa Barbara), Christopher Kruegel (University of California, Santa Barbara), Giovanni Vigna (University of California, Santa Barbara)

Read More

LAMP: Lightweight Approaches for Latency Minimization in Mixnets with...

Mahdi Rahimi (KU Leuven), Piyush Kumar Sharma (University of Michigan), Claudia Diaz (KU Leuven)

Read More

Blackbox Fuzzing of Distributed Systems with Multi-Dimensional Inputs and...

Yonghao Zou (Beihang University and Peking University), Jia-Ju Bai (Beihang University), Zu-Ming Jiang (ETH Zurich), Ming Zhao (Arizona State University), Diyu Zhou (Peking University)

Read More