Cheng Chu (Indiana University Bloomington), Qian Lou (University of Central Florida), Fan Chen (Indiana University Bloomington), Lei Jiang (Indiana University Bloomington)

Variational quantum algorithms (VQAs) have emerged as one of the most promising paradigms for achieving practical quantum advantage in the noisy intermediate-scale quantum (NISQ) era. To enhance the computational accuracy of VQAs on noisy hardware, zero noise extrapolation (ZNE) has become a widely adopted and effective error mitigation technique. However, the growing reliance on ZNE also increases the importance of identifying potential adversarial exploits. We examine existing backdoor attacks and highlight why they struggle to compromise ZNE. Specifically, quantum backdoor attacks that modify circuit structures merely shift the ideal output without affecting the noise-dependent extrapolation process, leaving ZNE intact. Likewise, parameter-level backdoors that are trained without accounting for device-specific noise exhibit inconsistent behavior across different hardware platforms, resulting in unreliable or ineffective attacks. Building on these observations, we uncover a new class of backdoor vulnerabilities that specifically target the unique properties of ZNE.

In this study, we propose QNBAD, a novel and stealthy backdoor attack targeting ZNE. QNBAD is carefully designed to preserve the correct functionality of variational quantum circuits on most devices. However, under a specific noise model, it leverages subtle interactions between quantum noise and circuit structure to systematically manipulate the sampled expectation values across different noise levels. This targeted perturbation corrupts the ZNE fitting process and leads to significantly biased final estimates. Compared to prior backdoor methods, QNBAD achieves substantially greater absolute error amplification, ranging from 1.68$times$ to 11.7$times$ across four platforms and six applications. Furthermore, it remains effective across a variety of fitting functions and ZNE variants.

View More Papers

Mobius: Enabling Byzantine-Resilient Single Secret Leader Election with Uniquely...

Hanyue Dou (Institute of Software, Chinese Academy of Sciences; the School of Computer Science and Technology, University of Chinese Academy of Sciences), Peifang Ni (Institute of Software, Chinese Academy of Sciences; Zhongguancun Laboratory), Yingzi Gao (Shandong University), Jing Xu (Institute of Software, Chinese Academy of Sciences; Zhongguancun Laboratory)

Read More

VeriLoRA: Fine-Tuning Large Language Models with Verifiable Security via...

Guofu Liao (Shenzhen University), Taotao Wang (Shenzhen University), Shengli Zhang (Shenzhen University), Jiqun Zhang (Shenzhen University), Long Shi (Nanjing University of Science and Technology), Dacheng Tao (Nanyang Technological University)

Read More

PriSrv+: Privacy and Usability-Enhanced Wireless Service Discovery with Fast...

Yang Yang (Singapore Management University), Guomin Yang (Singapore Management University), Yingjiu Li (University of Oregon, USA), Pengfei Wu (Singapore Management University), Rui Shi (Hainan University, China), Minming Huang (Singapore Management University), Jian Weng (Jinan University, Guangzhou, China), HweeHwa Pang (Singapore Management University), Robert H. Deng (Singapore Management University)

Read More