Xin Jin (The Ohio State University), Shiqing Ma (University of Massachusetts Amherst), Zhiqiang Lin (The Ohio State University)

While neural networks (NNs) are traditionally associated with tasks such as image recognition and natural language processing, this paper presents a novel application of NNs for efficient cryptographic computations. Leveraging the Turing completeness and inherent adaptability of NN models, we propose a transformative approach that efficiently accelerates cryptographic computations on various platforms. More specifically, with a program translation framework that converts traditional cryptographic algorithms into NN models, our proof-of-concept implementations in TensorFlow demonstrate substantial performance improvements: encryption speeds for AES, Chacha20, and Salsa20 show increases of up to 4.09$times$, 5.44$times$, and 5.06$times$, respectively, compared to existing GPU-based cryptographic solutions written by human experts. These enhancements are achieved without compromising the security of the original cryptographic algorithms, ensuring that our neural network-based approach maintains robust security standards. This repurposing of NNs opens new pathways for the development of scalable, efficient, and secure cryptographic systems that can adapt to the evolving
demands of modern computing environments.

View More Papers

Explanation as a Watermark: Towards Harmless and Multi-bit Model...

Shuo Shao (Zhejiang University), Yiming Li (Zhejiang University), Hongwei Yao (Zhejiang University), Yiling He (Zhejiang University), Zhan Qin (Zhejiang University), Kui Ren (Zhejiang University)

Read More

Security Signals: Making Web Security Posture Measurable at Scale

Michele Spagnuolo (Google), David Dworken (Google), Artur Janc (Google), Santiago Díaz (Google), Lukas Weichselbaum (Google)

Read More

PowerRadio: Manipulate Sensor Measurement via Power GND Radiation

Yan Jiang (Zhejiang University), Xiaoyu Ji (Zhejiang University), Yancheng Jiang (Zhejiang University), Kai Wang (Zhejiang University), Chenren Xu (Peking University), Wenyuan Xu (Zhejiang University)

Read More

Evaluating LLMs Towards Automated Assessment of Privacy Policy Understandability

Keika Mori (Deloitte Tohmatsu Cyber LLC, Waseda University), Daiki Ito (Deloitte Tohmatsu Cyber LLC), Takumi Fukunaga (Deloitte Tohmatsu Cyber LLC), Takuya Watanabe (Deloitte Tohmatsu Cyber LLC), Yuta Takata (Deloitte Tohmatsu Cyber LLC), Masaki Kamizono (Deloitte Tohmatsu Cyber LLC), Tatsuya Mori (Waseda University, NICT, RIKEN AIP)

Read More