Yutong Ye (Institute of software, Chinese Academy of Sciences & Zhongguancun Laboratory, Beijing, PR.China.), Tianhao Wang (University of Virginia), Min Zhang (Institute of Software, Chinese Academy of Sciences), Dengguo Feng (Institute of Software, Chinese Academy of Sciences)

This paper investigates the fundamental estimation problem in local differential privacy (LDP). We categorize existing estimation methods into two approaches, the unbiased estimation approach, which, under LDP, often gives unreasonable results (negative results or the sum of estimation does not equal to the total number of participating users), due to the excessive amount of noise added in LDP, and the maximal likelihood estimation (MLE)-based approach, which, can give reasonable results, but often suffers from the overfitting issue. To address this challenge, we propose a reduction framework inspired by Gaussian mixture models (GMM). We adapt the reduction framework to LDP estimation by transferring the estimation problem to the density estimation problem of the mixture model. Through the merging operation of the smallest weight component in this mixture model, the EM algorithm converges faster and produces a more robust distribution estimation. We show this framework offers a general and efficient way of modeling various LDP protocols. Through extensive evaluations, we demonstrate the superiority of our approach in terms of mean estimation, categorical distribution estimation, and numerical distribution estimation.

View More Papers

Horcrux: Synthesize, Split, Shift and Stay Alive; Preventing Channel...

Anqi Tian (Institute of Software, Chinese Academy of Sciences; School of Computer Science and Technology, University of Chinese Academy of Sciences), Peifang Ni (Institute of Software, Chinese Academy of Sciences; Zhongguancun Laboratory, Beijing, P.R.China), Yingzi Gao (Institute of Software, Chinese Academy of Sciences; University of Chinese Academy of Sciences), Jing Xu (Institute of Software, Chinese…

Read More

No Source Code? No Problem! Twenty Years of Research...

Jack W. Davidson, Professor of Computer Science in the School of Engineering and Applied Science, University of Virginia

Read More

Panel on “Security and Privacy Issues in New 5G...

Moderator: Arupjyoti (Arup) Bhuyan, Ph.D. Director, Wireless Security Institute, Idaho National Laboratory Panelists: Ted K. Woodward, Ph.D. Technical Director for FutureG, OUSD (R&E) Phillip Porras, Program Director, Internet Security Research, SRI Donald McBride, Senior Security Researcher, Bell Laboratories, Nokia

Read More

Do (Not) Follow the White Rabbit: Challenging the Myth...

Soheil Khodayari (CISPA Helmholtz Center for Information Security), Kai Glauber (Saarland University), Giancarlo Pellegrino (CISPA Helmholtz Center for Information Security)

Read More