Yutong Ye (Institute of software, Chinese Academy of Sciences & Zhongguancun Laboratory, Beijing, PR.China.), Tianhao Wang (University of Virginia), Min Zhang (Institute of Software, Chinese Academy of Sciences), Dengguo Feng (Institute of Software, Chinese Academy of Sciences)

This paper investigates the fundamental estimation problem in local differential privacy (LDP). We categorize existing estimation methods into two approaches, the unbiased estimation approach, which, under LDP, often gives unreasonable results (negative results or the sum of estimation does not equal to the total number of participating users), due to the excessive amount of noise added in LDP, and the maximal likelihood estimation (MLE)-based approach, which, can give reasonable results, but often suffers from the overfitting issue. To address this challenge, we propose a reduction framework inspired by Gaussian mixture models (GMM). We adapt the reduction framework to LDP estimation by transferring the estimation problem to the density estimation problem of the mixture model. Through the merging operation of the smallest weight component in this mixture model, the EM algorithm converges faster and produces a more robust distribution estimation. We show this framework offers a general and efficient way of modeling various LDP protocols. Through extensive evaluations, we demonstrate the superiority of our approach in terms of mean estimation, categorical distribution estimation, and numerical distribution estimation.

View More Papers

What’s Done Is Not What’s Claimed: Detecting and Interpreting...

Chang Yue (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Kai Chen (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Zhixiu Guo (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Jun Dai, Xiaoyan Sun (Department of Computer Science, Worcester Polytechnic Institute), Yi Yang (Institute of Information Engineering, Chinese Academy…

Read More

CASPR: Context-Aware Security Policy Recommendation

Lifang Xiao (Institute of Information Engineering, Chinese Academy of Sciences), Hanyu Wang (Institute of Information Engineering, Chinese Academy of Sciences), Aimin Yu (Institute of Information Engineering, Chinese Academy of Sciences), Lixin Zhao (Institute of Information Engineering, Chinese Academy of Sciences), Dan Meng (Institute of Information Engineering, Chinese Academy of Sciences)

Read More

From Large to Mammoth: A Comparative Evaluation of Large...

Jie Lin (University of Central Florida), David Mohaisen (University of Central Florida)

Read More

CHAOS: Exploiting Station Time Synchronization in 802.11 Networks

Sirus Shahini (University of Utah), Robert Ricci (University of Utah)

Read More