Zhuoran Liu (Radboud university), Niels Samwel (Radboud University), Léo Weissbart (Radboud University), Zhengyu Zhao (Radboud University), Dirk Lauret (Radboud University), Lejla Batina (Radboud University), Martha Larson (Radboud University)

We introduce emph{screen gleaning}, a TEMPEST attack in which the screen of a mobile device is read without a visual line of sight, revealing sensitive information displayed on the phone screen. The screen gleaning attack uses an antenna and a software-defined radio (SDR) to pick up the electromagnetic signal that the device sends to the screen to display, e.g., a message with a security code. This special equipment makes it possible to recreate the signal as a gray-scale image, which we refer to as an emph{emage}. Here, we show that it can be used to read a security code. The screen gleaning attack is challenging because it is often impossible for a human viewer to interpret the emage directly. We show that this challenge can be addressed with machine learning, specifically, a deep learning classifier. Screen gleaning will become increasingly serious as SDRs and deep learning continue to rapidly advance. In this paper, we demonstrate the security code attack and we propose a testbed that provides a standard setup in which screen gleaning could be tested with different attacker models. Finally, we analyze the dimensions of screen gleaning attacker models and discuss possible countermeasures with the potential to address them.

View More Papers

WeepingCAN: A Stealthy CAN Bus-off Attack

Gedare Bloom (University of Colorado Colorado Springs) Best Paper Award Winner ($300 cash prize)!

Read More

HTTPS-Only: Upgrading all connections to https: in Web Browsers

Christoph Kerschbaumer, Julian Gaibler, Arthur Edelstein (Mozilla Corporation), Thyla van der Merwey (ETH Zurich)

Read More

DNS Privacy Vs : Confronting protocol design trade offs...

Mallory Knodel (Center for Democracy and Technology), Shivan Sahib (Salesforce)

Read More

Practical Blind Membership Inference Attack via Differential Comparisons

Bo Hui (The Johns Hopkins University), Yuchen Yang (The Johns Hopkins University), Haolin Yuan (The Johns Hopkins University), Philippe Burlina (The Johns Hopkins University Applied Physics Laboratory), Neil Zhenqiang Gong (Duke University), Yinzhi Cao (The Johns Hopkins University)

Read More