Beomjin Jin (Sungkyunkwan University), Eunsoo Kim (Sungkyunkwan University), Hyunwoo Lee (KENTECH), Elisa Bertino (Purdue University), Doowon Kim (University of Tennessee, Knoxville), Hyoungshick Kim (Sungkyunkwan University)

The sharing of Cyber Threat Intelligence (CTI) across organizations is gaining traction, as it can automate threat analysis and improve security awareness. However, limited empirical studies exist on the prevalent types of cybersecurity threat data and their effectiveness in mitigating cyber attacks. We propose a framework named CTI-Lense to collect and analyze the volume, timeliness, coverage, and quality of Structured Threat Information eXpression (STIX) data, a de facto standard CTI format, from a list of publicly available CTI sources. We collected about 6 million STIX data objects from October 31, 2014 to April 10, 2023 from ten data sources and analyzed their characteristics. Our analysis reveals that STIX data sharing has steadily increased in recent years, but the volume of STIX data shared is still relatively low to cover all cyber threats. Additionally, only a few types of threat data objects have been shared, with malware signatures and URLs accounting for more than 90% of the collected data. While URLs are usually shared promptly, with about 72% of URLs shared earlier than or on the same day as VirusTotal, the sharing of malware signatures is significantly slower. Furthermore, we found that 19% of the Threat actor data contained incorrect information, and only 0.09% of the Indicator data provided security rules to detect cyber attacks. Based on our findings, we recommend practical considerations for effective and scalable STIX data sharing among organizations.

View More Papers

Predictive Context-sensitive Fuzzing

Pietro Borrello (Sapienza University of Rome), Andrea Fioraldi (EURECOM), Daniele Cono D'Elia (Sapienza University of Rome), Davide Balzarotti (Eurecom), Leonardo Querzoni (Sapienza University of Rome), Cristiano Giuffrida (Vrije Universiteit Amsterdam)

Read More

NODLINK: An Online System for Fine-Grained APT Attack Detection...

Shaofei Li (Key Laboratory of High-Confidence Software Technologies (MOE), School of Computer Science, Peking University), Feng Dong (Huazhong University of Science and Technology), Xusheng Xiao (Arizona State University), Haoyu Wang (Huazhong University of Science and Technology), Fei Shao (Case Western Reserve University), Jiedong Chen (Sangfor Technologies Inc.), Yao Guo (Key Laboratory of High-Confidence Software Technologies…

Read More

COSPAS Search and Rescue Satellite Uplink: A MAC-Based Security...

Syed Khandker (New York University Abu Dhabi), Krzysztof Jurczok (Amateur Radio Operator), Christina Pöpper (New York University Abu Dhabi)

Read More

Efficient Normalized Reduction and Generation of Equivalent Multivariate Binary...

Arnau Gàmez-Montolio (City, University of London; Activision Research), Enric Florit (Universitat de Barcelona), Martin Brain (City, University of London), Jacob M. Howe (City, University of London)

Read More