Xiaokuan Zhang (The Ohio State University), Jihun Hamm (The Ohio State University), Michael K. Reiter (University of North Carolina at Chapel Hill), Yinqian Zhang (The Ohio State University)

Machine learning empowers traffic-analysis attacks that breach users' privacy from their encrypted traffic. Recent advances in deep learning drastically escalate such threats.
One prominent example demonstrated recently is a traffic-analysis attack against video streaming by using convolutional neural networks. In this paper, we explore the adaption of techniques previously used in the domains of adversarial machine learning and differential privacy to mitigate the machine-learning-powered analysis of streaming traffic.

Our findings are twofold. First, constructing adversarial samples effectively confounds an adversary with a predetermined classifier but is less effective when the adversary can adapt to the defense by using alternative classifiers or training the classifier with adversarial samples. Second, differential-privacy guarantees are very effective against such statistical-inference-based traffic analysis, while remaining agnostic to the machine learning classifiers used by the adversary. We propose two mechanisms for enforcing differential privacy for encrypted streaming traffic, and evaluate their security and utility. Our empirical implementation and evaluation suggest that the proposed statistical privacy approaches are promising solutions in the underlying scenarios.

View More Papers

How Bad Can It Git? Characterizing Secret Leakage in...

Michael Meli (North Carolina State University), Matthew R. McNiece (Cisco Systems and North Carolina State University), Bradley Reaves (North Carolina State University)

Read More

Coconut: Threshold Issuance Selective Disclosure Credentials with Applications to...

Alberto Sonnino (University College London (UCL)), Mustafa Al-Bassam (University College London (UCL)), Shehar Bano (University College London (UCL)), Sarah Meiklejohn (University College London (UCL)), George Danezis (University College London (UCL))

Read More

Enemy At the Gateways: Censorship-Resilient Proxy Distribution Using Game...

Milad Nasr (University of Massachusetts Amherst), Sadegh Farhang (Pennsylvania State University), Amir Houmansadr (University of Massachusetts Amherst), Jens Grossklags (Technical University of Munich)

Read More

Total Recall: Persistence of Passwords in Android

Jaeho Lee (Rice University), Ang Chen (Rice University), Dan S. Wallach (Rice University)

Read More