Arjun Arunasalam (Purdue University), Andrew Chu (University of Chicago), Muslum Ozgur Ozmen (Purdue University), Habiba Farrukh (University of California, Irvine), Z. Berkay Celik (Purdue University)

The impact of e-commerce on today’s society is a global phenomenon. Given the increased demand for online purchases of items, e-commerce platforms often defer item sales to third-party sellers. A number of these sellers are dropshippers, sellers acting as middlemen who fulfill their customers’ orders through third-party suppliers. While this allows customers to access more products on e-commerce sites, we uncover that abusive dropshippers, who exploit the standard permitted dropshipping model, exist, deceiving customers, and damaging other e-commerce sellers. In this paper, we present the first comprehensive study on the characterization of abusive dropshippers and uncover harmful strategies they use to list items and evade account suspension on e-commerce marketplaces. We crawled the web to discover online forums, instructional material, and software used by the abusive dropshipping community. We inductively code forum threads and instructional material and read software documentation, installing when possible, to create an end-to-end lifecycle of this abuse. We also identify exploitative strategies abusive dropshippers use to ensure persistence on platforms. We then interviewed six individuals experienced in e-commerce (legal consultants and sellers) and developed an understanding of how abusive dropshipping harms customers and sellers. Through this, we present five characteristics that warrant future investigation into automated detection of abusive dropshippers on e-commerce platforms. Our efforts present a comprehensive view of how abusive dropshippers operate and how sellers and consumers interact with them, providing a framework to motivate future investigations into countering these harmful operations.

View More Papers

It’s Standards’ Time to Shine: Insights for IoT Cybersecurity...

Dr. Michael J. Fagan, National Institute of Standards and Technology

Read More

WIP: Hidden Hub Eavesdropping Attack in Matter-enabled Smart Home...

Song Liao, Jingwen Yan, Long Cheng (Clemson University)

Read More

GNNIC: Finding Long-Lost Sibling Functions with Abstract Similarity

Qiushi Wu (University of Minnesota), Zhongshu Gu (IBM Research), Hani Jamjoom (IBM Research), Kangjie Lu (University of Minnesota)

Read More

Like, Comment, Get Scammed: Characterizing Comment Scams on Media...

Xigao Li (Stony Brook University), Amir Rahmati (Stony Brook University), Nick Nikiforakis (Stony Brook University)

Read More